Farmasötik Formülasyonlarda Allopurinol’ün Sıfırıncı Dereceden ve Birinci Dereceden Türev Spektrofotometrisi Yöntemleriyle Kantitatif Analizi

Bu çalışmada tabletlerde Allopurinol’ün kantitatif analizi için doğrudan absorbans ölçümü ve birinci türev spektrofotometrisi yöntemlerini kapsayan iki farklı spektrofotometrik yöntem geliştirildi. Allopurinol’ün analizi için 245.0 nm dalga boyunda doğrudan absorbans ölçümleri yapılarak kalibrasyon eğrisi elde edildi. Birinci dereceden türev spektrofotometrisi yönteminde 257.6 nm de dalga boyunda dA/dλ değerleri kullanılarak kalibrasyon denklemi hesaplandı. Allopurinol’ün miktar tayini için her iki yöntemin uygulanmasında doğrusal çalışma aralığı olarak 4.0-36.0 μg/mL bulunmuştur. Hazırlanan test numunelerinin analizi ve standart ekleme tekniği kullanılarak önerilen analitik yöntemler valide edildi. Analizler, ilgili ilacın miktar tayini için kullanılan yöntemlerin kesin, doğru ve güvenilir olduğunu gösterdi.

Zero-Order Spectrophotometry and First- Order Derivative Spectrophotometry for the Quantitative Estimation of Allopurinol in a Pharmaceutical Formulation

In this study, two different spectrophotometric methods, direct absorbance measurement method and first derivative spectrophotometry were proposed for the quantitative analysis of allopurinol in tablets. In the application of direct absorbance measurement to the analysis of allopurinol, calibration curve was obtained by measuring the absorbance values at 245.0 nm in the zero-order spectra. In first derivative method, calibration equation was computed by using the dA/dλ values at 257.6 nm. Linearity range for both methods were found between 4.0-36.0 μg/mL for the analysis of allopurinol. The proposed methods were checked by analyzing external test samples containing allopurinol and using standard addition samples. Analysis results showed that the applied methods were precise, accurate and reliable for the quantitation of the related drug.

___

  • 1. Hardaman JG, Limbird IE: Eds. The Pharmacological Basis of Therapeutics (Goodman & Gilmans), 10th ed., McGraw-Hill, NewYork, 721, 2001.
  • 2. Khayoon WS, Al-Abaichy MQ, Jasim M, Al-Hamadany MA: Spectrophotometric determination of allopurinol in tablet formulation. Journal of Physical Sciences 2008,19(2): 23-30.
  • 3. Refat MS, Mohamed GG, Fathi A: Spectrophotometric determination of allopurinol drug in tablets: Spectroscopic characterization of the solid CT complexes. Bulletin of the Korean Chemical Society 2010, 31(6): 1535-1542.
  • 4. Sakla A, Wintersteiger R: Determination of allopurinol and flucytosine in tablets by differential UV spectroscopy. Analytical Letters 1990, 23(5): 843-861
  • 5. Gueven KC, Ozol T: Spectrophotometric determination of allopurinol. Scientia Pharmaceutica 1980, 48(1): 80-82.
  • 6. Bedair MM, Korany MA, Elsayed MAE, Fahmy OT: Spectrofluorimetric determination of three pharmaceutical thiocompounds and allopurinol using mercurochrome. Spectroscopy Letters 1990, 23 (2):161-173.
  • 7. Ebaid MY, Habeeb AA, Ayad M, Taha EA: Quantitative determination of allopurinol by fluorescence labelling using 5-dimethylamino naphthalene-1-sulphonyl chloride. Analytical Letters 1984, 17 (9): 759-770.
  • 8. Vani R, Vijaya Kumar B, Krishna Mohan, G: Analytical method development and validation for the determination of allopurinol and alphalipoic acid using reverse phase HPLC method in bulk and tablet dosage form. Research Journal of Pharmacy and Technology 2015, 8 (2): 207-211.
  • 9. Eisenberg EJ, Conzentino P, Liversidge GG, Cundy KC: Determination of allopurinol and oxypurinol in rat plasma, intestinal wash, and bile by high-performance liquid chromatography with electrochemical detection (HPLC/EC) following automated solid phase extraction. Pharmaceutical Research 1991, 8 (5): 653-655.
  • 10. Breithaupt H, Goebel G: Determination of allopurinol and oxipurinol in biological fluids by highperformance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications 1981, 226 (1): 237-242.
  • 11. Shostak D: Liquid chromatographic determination of allopurinol in tablets: Collaborative study. Journal of the Association of Official Analytical Chemists 1984, 67 (6): 1121-1122.
  • 12. Liu X, Ni XJ, Shang DW, Zhang M, Hu, JQ, Qiu C, Luo FT, Wen YG: Determination of allopurinol and oxypurinol in human plasma and urine by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2013, 941:10-16.
  • 13. Kasawar G, Razzak M, Zaheer Z, Farooqui M: Validated RP-LC-MS/MS method for the simultaneous determination of allopurinol and its major metabolite, oxypurinol, in human plasma. Journal of Liquid Chromatography and Related Technologies 2011, 34(1): 26-37.
  • 14. Khosraven R, Mulford DJ, Ndzi B, Ferron S., Rodenheiser L, Simpson JR, Beaudry F: Determination of allopurinol and oxypurinol in human plasma by LC/MS/MS. Proceedings 50th ASMS Conference on Mass Spectrometry and Allied Topics 2002, 495-496.
  • 15. Pérez-Ruiz T, Martínez-Lozano C, Tomás V, Galera R: Development of a capillary electrophoresis method for the determination of allopurinol and its active metabolite oxypurinol. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2003, 798(2): 303-308.
  • 16. Sun X, Cao W, Bai X, Yang X, Wang E: Determination of allopurinol and its active metabolite oxypurinol by capillary electrophoresis with end-column amperometric detection. Analytica Chimica Acta 2001, 442(1):121-128.
  • 17. Teradale AB, Lamani, SD, Das SN: Up growth effect of cetyltrimethyl ammonium bromide with carbon paste electrode for the electrochemical determination of allopurinol and its biological activities. Analytical and Bioanalytical Electrochemistry 2016, 8(7): 814-829.
  • 18. Chatten LG, Boyce M, Moskalyk RE, Stanley Pons B, Madan DK: Determination of allopurinol in tablets by differential-pulse polarography.The Analyst 1981,106 (1260): 365-368.