Alzheimer Hastalığı ve Anti-Alzheimer Etkili Bileşiklerin Yapılarının Araştırılması

Demansın en yaygın şekli olan Alzheimer hastalığı, hafıza kaybı ve diğer bilişsel problemler ile karakterize karmaşık bir hastalıktır. Artan prevalansa sahip olan Alzheimer hastalığının fizyopatolojisinin anlaşılması ve bu hastalığın tedavisinde etkin olan bileşiklerin yapılarının araştırılması, yeni etkin ilaç moleküllerinin geliştirilmesine yardımcı olacaktır. Bu anlamda hastalık üzerinde etkili olan hipotezlerin, etkin olan bileşiklerin yapısının ve etki mekanizmalarının araştırılması büyük önem taşımaktadır. Son yıllarda yapılan araştırmalarda, hastalığın patolojisinde etkili olan hipotezlerin birden fazlasını etkileyebilen daha güçlü bileşikler elde edilmeye odaklanıldığı görülmektedir. Bu derleme çalışmasında, Alzheimer hastalığının patolojisinde rol oynayan önemli hipotezler ile bu hipotezler üzerinden anti-Alzheimer etkinliği kanıtlanmış ilaç etken maddelerinin yapıları ortaya konulmuştur.

Alzheimer's Disease and Investigation of The Structure of Anti-Alzheimer Active Compounds

Alzheimer's disease, the most common form of dementia, is a complex disease characterized by memory loss and other cognitive problems. Understanding the pathophysiology of Alzheimer's disease, which has an increasing prevalence, and investigating the structures of compounds that are effective in the treatment of this disease will help to develop new effective drug molecules. In this sense, it is of great importance to investigate the hypotheses that are effective on the disease, the structure of the active compounds, and their mechanisms of action. Recent studies have shown that focus on obtaining stronger compounds that can affect more than one of the hypotheses that are effective in the pathology of the disease. In this review study, the important hypotheses that play a role in the pathology of Alzheimer's disease and the structures of drug active compounds with proven anti-Alzheimer activity over these hypotheses are revealed.

___

  • Gurvit H, Emre M, Tinaz S, Bilgic B, Hanagasi H, Sahin H, et al. The prevalence of dementia in an urban Turkish population. Am J Alzheimers Dis Other Demen. 2008;23(1):67-76. https://doi.org/10.1177/1533317507310570
  • Engelli ve Yaşlı İstatistik Bülteni. Engelli ve Yaşlı Hizmetleri Genel Müdürlüğü, T.C. Aile Ve Sosyal Hizmetler Bakanlığı; Eylül 2022. [cited May 2023]. Available from: https://www.aile.gov.tr/media/120191/eyhgm_istatistik_bulteni_eylul2022.pdf.
  • Alzheimer ve Diğer Demans Hastalıkları Klinik Protokolü. vol. 1. Türkiye Cumhuriyeti Sağlık Bakanlığı Sağlık Hizmetleri Genel Müdürlüğü; Türkiye, 2020.
  • Cankurtaran M, Arıoğul S. Demans ve Alzheimer Hastalığı. [cited May 2023]. Available from:http://www.eczaakademi.org/images/upld2/ecza_akademi/makale/20110113040255demans_alzheimer.pdf
  • Cipriani G, Dolciotti C, Picchi L, Bonuccelli U. Alzheimer and his disease: a brief history. Neurol Sci. 2011;32(2):275-9. https://doi.org/10.1007/s10072-010-0454-7
  • Ramirez-Bermudez J. Alzheimer's disease: critical notes on the history of a medical concept. Arch Med Res. 2012;43(8):595-9. https://doi.org/10.1016/j.arcmed.2012.11.008
  • Zvěřová M. Clinical aspects of Alzheimer's disease. Clinical Biochemistry. 2019;72(3-6. https://doi.org/10.1016/j.clinbiochem.2019.04.015
  • Apostolova LG. Alzheimer Disease. Continuum (Minneap Minn). 2016;22(2 Dementia):419-34. https://doi.org/10.1212/CON.0000000000000307
  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939-44. https://doi.org/10.1212/wnl.34.7.939
  • Selekler K. Alois Alzheimer and Alzheimer’s Disease. Türk Geriatri Dergisi. 2010;13(3)(9-14). Available from: https://geriatri.dergisi.org/uploads/pdf/pdf_TJG_508.pdf
  • İstatistiklerle Yaşlılar, 2016. Türkiye İstatistik Kurumu, Yayım tarihi: 16 Mart 2017. [cited May 2023]. Available from: https://data.tuik.gov.tr/Bulten/Index?p=Istatistiklerle-Yaslilar-2016-24644.
  • Hussein S. Türkiye için Demans Bakım Modeli. 2016: Türkiye Cumhuriyeti Aile ve Sosyal Politikalar Bakanlığı. [cited May 2023]. Available from: https://aile.gov.tr/media/100413/annex-14-5-2-2-models-of-services-for-dementia-sh.pdf
  • Ghosh AK, Osswald HL. BACE1 (beta-secretase) inhibitors for the treatment of Alzheimer's disease. Chem Soc Rev. 2014;43(19):6765-813. https://doi.org/10.1039/c3cs60460h
  • Caldwell JP, Mazzola RD, Durkin J, Chen J, Chen X, Favreau L, et al. Discovery of potent iminoheterocycle BACE1 inhibitors. Bioorg Med Chem Lett. 2014;24(23):5455-9. https://doi.org/10.1016/j.bmcl.2014.10.006
  • Iraji A, Khoshneviszadeh M, Firuzi O, Khoshneviszadeh M, Edraki N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg Chem. 2020;97(103649. https://doi.org/10.1016/j.bioorg.2020.103649
  • Rogers K, Felsenstein KM, Hrdlicka L, Tu Z, Albayya F, Lee W, et al. Modulation of gamma-secretase by EVP-0015962 reduces amyloid deposition and behavioral deficits in Tg2576 mice. Mol Neurodegener. 2012;7:61. https://doi.org/10.1186/1750-1326-7-61
  • Vasilenko ET, Tonkopii VD. Characteristics of galanthamine as a reversible inhibitor of cholinesterase. Biokhimiia. 1974;39(4):701-3. PMID: 4441566
  • Cavedo E, Grothe MJ, Colliot O, Lista S, Chupin M, Dormont D, et al. Reduced basal forebrain atrophy progression in a randomized Donepezil trial in prodromal Alzheimer's disease. Sci Rep. 2017;7(1):11706. https://doi.org/10.1038/s41598-017-09780-3
  • Cavedo E, Dubois B, Colliot O, Lista S, Croisile B, Tisserand GL, et al. Reduced Regional Cortical Thickness Rate of Change in Donepezil-Treated Subjects With Suspected Prodromal Alzheimer's Disease. J Clin Psychiatry. 2016;77(12):e1631-e8. https://doi.org/10.4088/JCP.15m10413
  • Maelicke A, Hoeffle-Maas A, Ludwig J, Maus A, Samochocki M, Jordis U, et al. Memogain is a galantamine pro-drug having dramatically reduced adverse effects and enhanced efficacy. J Mol Neurosci. 2010;40(1-2):135-7. https://doi.org/10.1007/s12031-009-9269-5
  • Birks J, Grimley Evans J, Iakovidou V, Tsolaki M. Rivastigmine for Alzheimer's disease. Cochrane Database Syst Rev. 2000;4(CD001191):1465-1858. https://doi.org/10.1002/14651858.CD001191
  • Patocka J, Jun D, Kuca K. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer's disease. Curr Drug Metab. 2008;9(4):332-5. https://doi.org/10.2174/138920008784220619
  • Zhang C, Xu Y, Chowdhary A, Fox D, 3rd, Gurney ME, Zhang HT, et al. Memory enhancing effects of BPN14770, an allosteric inhibitor of phosphodiesterase-4D, in wild-type and humanized mice. Neuropsychopharmacology. 2018;43(11):2299-309. https://doi.org/10.1038/s41386-018-0178-6
  • Benade VS, Daripelli S, Thentu JB, Manoharan A, Medapati RB, Subramanian R, et al. Suvn‐g3031, an h3 receptor inverse agonist, produces procognitive effects without affecting sleep in preclinical models. Alzheimer's & Dementia. 2015;11(7S-10): 475. https://doi.org/10.1016/j.jalz.2015.06.525
  • Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120(3):885-90. https://doi.org/10.1016/s0006-291x(84)80190-4
  • Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984;122(3):1131-5. https://doi.org/10.1016/0006-291x(84)91209-9
  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985;82(12):4245-9. https://doi.org/10.1073/pnas.82.12.4245
  • Wolfe MS. Secretase targets for Alzheimer's disease: identification and therapeutic potential. J Med Chem. 2001;44(13):2039-60. https://doi.org/10.1021/jm0004897
  • Postina R. Activation of alpha-secretase cleavage. J Neurochem. 2012;120(Suppl 1):46-54. https://doi.org/10.1111/j.1471-4159.2011.07459.x
  • Sahlin C, Lord A, Magnusson K, Englund H, Almeida CG, Greengard P, et al. The Arctic Alzheimer mutation favors intracellular amyloid-beta production by making amyloid precursor protein less available to alpha-secretase. J Neurochem. 2007;101(3):854-62. https://doi.org/10.1111/j.1471-4159.2006.04443.x
  • Uddin MS, Kabir MT, Jeandet P, Mathew B, Ashraf GM, Perveen A, et al. Novel Anti-Alzheimer's Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. Oxid Med Cell Longev. 2020;7039138. https://doi.org/10.1155/2020/7039138
  • Tang BL. Enhancing alpha-secretase Processing for Alzheimer's Disease-A View on SFRP1. Brain Sci. 2020;10(2):122. https://doi.org/10.3390/brainsci10020122
  • Liu HC, Leu SJ, Chang JG, Sung SM, Hsu WC, Lee LS, et al. The association of beta-site APP cleaving enzyme (BACE) C786G polymorphism with Alzheimer's disease. Brain Res. 2003;961(1):88-91. https://doi.org/10.1016/s0006-8993(02)03849-0
  • Prati F, Bottegoni G, Bolognesi ML, Cavalli A. BACE-1 Inhibitors: From Recent Single-Target Molecules to Multitarget Compounds for Alzheimer's Disease. J Med Chem. 2018;61(3):619-37. https://doi.org/10.1021/acs.jmedchem.7b00393
  • Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, et al. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer's Disease. N Engl J Med. 2018;378(18):1691-703. https://doi.org/10.1056/NEJMoa1706441
  • Novak G, Streffer JR, Timmers M, Henley D, Brashear HR, Bogert J, et al. Long-term safety and tolerability of atabecestat (JNJ-54861911), an oral BACE1 inhibitor, in early Alzheimer’s disease spectrum patients: a randomized, double-blind, placebo-controlled study and a two-period extension study. Alzheimer's Research & Therapy. 2020;12(58). https://doi.org/10.1186/s13195-020-00614-5
  • Machauer R, Lueoend R, Hurth K, Veenstra SJ, Rueeger H, Voegtle M, et al. Discovery of Umibecestat (CNP520): A Potent, Selective, and Efficacious beta-Secretase (BACE1) Inhibitor for the Prevention of Alzheimer's Disease. J Med Chem. 2021;64(20):15262-79. https://doi.org/10.1021/acs.jmedchem.1c01300
  • Willis BA, Lowe SL, Daugherty LL, Dean RA, English B, Ereshefsky L, et al. P1‐044: Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of LY3202626, a Novel Bace1 Inhibitor, in Healthy Subjects and Patients with Alzheimer’s Disease. Alzheimer's & Dementia. 2016;12(7S-8). https://doi.org/10.1016/j.jalz.2016.06.791
  • Wessels AM, Tariot PN, Zimmer JA, Selzler KJ, Bragg SM, Andersen SW, et al. Efficacy and Safety of Lanabecestat for Treatment of Early and Mild Alzheimer Disease. JAMA Neurology. 2020;77(2):199-209. https://doi.org/10.1001/jamaneurol.2019.3988
  • Durairajan SSK, Chirasani VR, Shetty SG, Iyaswamy A, Malampati S, Song J, et al. Decrease in the Generation of Amyloid-beta Due to Salvianolic Acid B by Modulating BACE1 Activity. Curr Alzheimer Res. 2017;14(11):1229-37. https://doi.org/10.2174/1567205014666170417103003
  • Lin YH, Liu AH, Wu HL, Westenbroek C, Song QL, Yu HM, et al. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents Abeta(25-35)-induced reduction in BPRP in PC12 cells. Biochem Biophys Res Commun. 2006;348(2):593-9. https://doi.org/10.1016/j.bbrc.2006.07.110
  • Zhou Y, Li W, Xu L, Chen L. In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid beta-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ Toxicol Pharmacol. 2011;31(3):443-52. https://doi.org/10.1016/j.etap.2011.02.006
  • Pitt J, Thorner M, Brautigan D, Larner J, Klein WL. Protection against the synaptic targeting and toxicity of Alzheimer's-associated Abeta oligomers by insulin mimetic chiro-inositols. FASEB J. 2013;27(1):199-207. https://doi.org/10.1096/fj.12-211896
  • Iuvone T, De Filippis D, Esposito G, D'Amico A, Izzo AA. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther. 2006;317(3):1143-9. https://doi.org/10.1124/jpet.105.099317
  • Airoldi C, Sironi E, Dias C, Marcelo F, Martins A, Rauter AP, et al. Natural compounds against Alzheimer's disease: molecular recognition of Abeta1-42 peptide by Salvia sclareoides extract and its major component, rosmarinic acid, as investigated by NMR. Chem Asian J. 2013;8(3):596-602. https://doi.org/10.1002/asia.201201063
  • Lue LF, Yan SD, Stern DM, Walker DG. Preventing activation of receptor for advanced glycation endproducts in Alzheimer's disease. Curr Drug Targets CNS Neurol Disord. 2005;4(3):249-66. https://doi.org/10.2174/1568007054038210
  • Burstein AH, Sabbagh M, Andrews R, Valcarce C, Dunn I, Altstiel L. Development of Azeliragon, an Oral Small Molecule Antagonist of the Receptor for Advanced Glycation Endproducts, for the Potential Slowing of Loss of Cognition in Mild Alzheimer’s Disease. The Journal Of Prevention of Alzheimer's Disease. 2018;1-6. https://doi.org/10.14283/jpad.2018.18
  • Hong Y, Shen C, Yin Q, Sun M, Ma Y, Liu X. Effects of RAGE-Specific Inhibitor FPS-ZM1 on Amyloid-β Metabolism and AGEs-Induced Inflammation and Oxidative Stress in Rat Hippocampus. Neurochemical Research. 2016;41(5):1192-9. https://doi.org/10.1007/s11064-015-1814-8
  • Zhang C, Griciuc A, Hudry E, Wan Y, Quinti L, Ward J, et al. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid beta-Protein by Promoting Microglial Phagocytosis. Sci Rep. 2018;8(1):1144. https://doi.org/10.1038/s41598-018-19641-2
  • Mohandas E, Rajmohan V, Raghunath B. Neurobiology of Alzheimer's disease. Indian J Psychiatry. 2009;51(1):55-61. https://doi.org/10.4103/0019-5545.44908
  • Wirth A, Holst K, Ponimaskin E. How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol. 2017;151:35-56. https://doi.org/10.1016/j.pneurobio.2016.03.007
  • Arai T, Hasegawa M, Nonoka T, Kametani F, Yamashita M, Hosokawa M, et al. Phosphorylated and cleaved TDP-43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP-43 proteinopathy. Neuropathology. 2010;30(2):170-81. https://doi.org/10.1111/j.1440-1789.2009.01089.x
  • Cavaliere P, Torrent J, Prigent S, Granata V, Pauwels K, Pastore A, et al. Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein. Biochim Biophys Acta. 2013;1832(1):20-8. https://doi.org/10.1016/j.bbadis.2012.09.005
  • Oji Y, Hatano T, Ueno SI, Funayama M, Ishikawa KI, Okuzumi A, et al. Variants in saposin D domain of prosaposin gene linked to Parkinson's disease. Brain. 2020;143(4):1190-205. https://doi.org/10.1093/brain/awaa064
  • Valdez C, Ysselstein D, Young TJ, Zheng J, Krainc D. Progranulin mutations result in impaired processing of prosaposin and reduced glucocerebrosidase activity. Hum Mol Genet. 2020;29(5):716-26. https://doi.org/10.1093/hmg/ddz229
  • Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518-36. https://doi.org/10.1111/joim.13141
  • Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7(5):376-85. https://doi.org/10.3969/j.issn.1673-5374.2012.05.009
  • Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018;14:450-64. https://doi.org/10.1016/j.redox.2017.10.014
  • Choi BH. Oxidative stress and Alzheimer's disease. Neurobiol Aging. 1995;16(4):675-8. https://doi.org/10.1016/0197-4580(95)00065-m
  • Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118-26. https://doi.org/10.4103/0973-7847.70902
  • Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R18-36. https://doi.org/10.1152/ajpregu.00327.2006
  • Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161-208. https://doi.org/10.2174/0929867053764635
  • Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adh Migr. 2009;3(1):88-93. https://doi.org/10.4161/cam.3.1.7402
  • Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W, et al. Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet. 1991;337(8753):1304-8. https://doi.org/10.1016/0140-6736(91)92978-b
  • Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33-44. https://doi.org/10.1001/jama.2013.282834
  • Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174(1):27-37. https://doi.org/10.1016/j.cbi.2008.05.003
  • Chen SY, Chen Y, Li YP, Chen SH, Tan JH, Ou TM, et al. Design, synthesis, and biological evaluation of curcumin analogues as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem. 2011;19(18):5596-604. https://doi.org/10.1016/j.bmc.2011.07.033
  • Yao Z, Drieu K, Papadopoulos V. The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from beta-amyloid-induced cell death by inhibiting the formation of beta-amyloid-derived diffusible neurotoxic ligands. Brain Res. 2001;889(1-2):181-90. https://doi.org/10.1016/s0006-8993(00)03131-0
  • Kumar A, Naidu PS, Seghal N, Padi SS. Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology. 2007;79(1):17-26. https://doi.org/10.1159/000097511
  • Sims NR, Zaidan E. Biochemical changes associated with selective neuronal death following short-term cerebral ischaemia. Int J Biochem Cell Biol. 1995;27(6):531-50. https://doi.org/10.1016/1357-2725(95)00026-L
  • Danysz W, Parsons CG. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease: preclinical evidence. Int J Geriatr Psychiatry. 2003;18:S23-32. https://doi.org/10.1002/gps.938
  • Friedman LK. Calcium: a role for neuroprotection and sustained adaptation. Mol Interv. 2006;6(6):315-29. https://doi.org/10.1124/mi.6.6.5
  • Yoshimizu T, Chaki S. Increased cell proliferation in the adult mouse hippocampus following chronic administration of group II metabotropic glutamate receptor antagonist, MGS0039. Biochemical and Biophysical Research Communications. 2004;315(2):493-6. https://doi.org/10.1016/j.bbrc.2004.01.073
  • Kim SH, Steele JW, Lee SW, Clemenson GD, Carter TA, Treuner K, et al. Proneurogenic Group II mGluR antagonist improves learning and reduces anxiety in Alzheimer Abeta oligomer mouse. Mol Psychiatry. 2014;19(11):1235-42. https://doi.org/10.1038/mp.2014.87
  • Perez-Garcia G, De Gasperi R, Gama Sosa MA, Perez GM, Otero-Pagan A, Tschiffely A, et al. PTSD-Related Behavioral Traits in a Rat Model of Blast-Induced mTBI Are Reversed by the mGluR2/3 Receptor Antagonist BCI-838. eNeuro. 2018;5(1):1-15. https://doi.org/10.1523/ENEURO.0357-17.2018
  • Rogawski MA, Wenk GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer's disease. CNS Drug Rev. 2003;9(3):275-308. https://doi.org/10.1111/j.1527-3458.2003.tb00254.x
  • Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, et al. Review of Current Strategies for Delivering Alzheimer's Disease Drugs across the Blood-Brain Barrier. Int J Mol Sci. 2019;20(2):381. https://doi.org/10.3390/ijms20020381
  • Cacabelos R, Takeda M, Winblad B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer's disease. Int J Geriatr Psychiatry. 1999;14(1):3-47. https://doi.org/10.1002/(sici)1099-1166(199901)14:1<3::aid-gps897>3.0.co;2-7
  • Perlmutter LS, Barron E, Chui HC. Morphologic association between microglia and senile plaque amyloid in Alzheimer's disease. Neurosci Lett. 1990;119(1):32-6. https://doi.org/10.1016/0304-3940(90)90748-x
  • Sheng JG, Mrak RE, Griffin WS. Microglial interleukin-1 alpha expression in brain regions in Alzheimer's disease: correlation with neuritic plaque distribution. Neuropathol Appl Neurobiol. 1995;21(4):290-301. https://doi.org/10.1111/j.1365-2990.1995.tb01063.x
  • Laske C, Stransky E, Hoffmann N, Maetzler W, Straten G, Eschweiler GW, et al. Macrophage colony-stimulating factor (M-CSF) in plasma and CSF of patients with mild cognitive impairment and Alzheimer's disease. Curr Alzheimer Res. 2010;7(5):409-14. https://doi.org/10.2174/156720510791383813
  • Venegas C, Heneka MT. Danger-associated molecular patterns in Alzheimer's disease. J Leukoc Biol. 2017;101(1):87-98. https://doi.org/10.1189/jlb.3MR0416-204R
  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000;21(3):383-421. https://doi.org/10.1016/s0197-4580(00)00124-x
  • Olajide OA, Bhatia HS, de Oliveira AC, Wright CW, Fiebich BL. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine. Evid Based Complement Alternat Med. 2013;459723. https://doi.org/10.1155/2013/459723
  • Velagapudi R, El-Bakoush A, Olajide OA. Activation of Nrf2 Pathway Contributes to Neuroprotection by the Dietary Flavonoid Tiliroside. Mol Neurobiol. 2018;55(10):8103-23. https://doi.org/10.1007/s12035-018-0975-2
  • Velagapudi R, Ajileye OO, Okorji U, Jain P, Aderogba MA, Olajide OA. Agathisflavone isolated from Anacardium occidentale suppresses SIRT1-mediated neuroinflammation in BV2 microglia and neurotoxicity in APPSwe-transfected SH-SY5Y cells. Phytother Res. 2018;32(10):1957-66. https://doi.org/10.1002/ptr.6122
  • Park SE, Sapkota K, Kim S, Kim H, Kim SJ. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol. 2011;164(3):1008-25. https://doi.org/10.1111/j.1476-5381.2011.01389.x
  • He FQ, Qiu BY, Zhang XH, Li TK, Xie Q, Cui DJ, et al. Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-kappaB activation in a rat model of Alzheimer's disease induced by amyloid-beta(1-42). Brain Res. 2011;1384:89-96. https://doi.org/10.1016/j.brainres.2011.01.103
  • He FQ, Qiu BY, Li TK, Xie Q, Cui DJ, Huang XL, et al. Tetrandrine suppresses amyloid-beta-induced inflammatory cytokines by inhibiting NF-kappaB pathway in murine BV2 microglial cells. Int Immunopharmacol. 2011;11(9):1220-5. https://doi.org/10.1016/j.intimp.2011.03.023
  • El-Bakoush A, Olajide OA. Formononetin inhibits neuroinflammation and increases estrogen receptor beta (ERbeta) protein expression in BV2 microglia. Int Immunopharmacol. 2018;61:325-37. https://doi.org/10.1016/j.intimp.2018.06.016
  • Khare P, Datusalia AK, Sharma SS. Parthenolide, an NF-kappaB Inhibitor Ameliorates Diabetes-Induced Behavioural Deficit, Neurotransmitter Imbalance and Neuroinflammation in Type 2 Diabetes Rat Model. Neuromolecular Med. 2017;19(1):101-12. https://doi.org/10.1007/s12017-016-8434-6
  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci. 1998;158(1):47-52. https://doi.org/10.1016/s0022-510x(98)00092-6
  • Lee SJ, Nam E, Lee HJ, Savelieff MG, Lim MH. Towards an understanding of amyloid-beta oligomers: characterization, toxicity mechanisms, and inhibitors. Chem Soc Rev. 2017;46(2):310-23. https://doi.org/10.1039/c6cs00731g
  • Guilloreau L, Combalbert S, Sournia-Saquet A, Mazarguil H, Faller P. Redox chemistry of copper-amyloid-beta: the generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state. Chembiochem. 2007;8(11):1317-25. https://doi.org/10.1002/cbic.200700111
  • Perez LR, Franz KJ. Minding metals: tailoring multifunctional chelating agents for neurodegenerative disease. Dalton Trans. 2010;39(9):2177-87. https://doi.org/10.1039/b919237a
  • Barnham KJ, Bush AI. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev. 2014;43(19):6727-49. https://doi.org/10.1039/c4cs00138a
  • Robert A, Liu Y, Nguyen M, Meunier B. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease. Acc Chem Res. 2015;48(5):1332-9. https://doi.org/10.1021/acs.accounts.5b00119
  • Nguyen M, Bijani C, Martins N, Meunier B, Robert A. Transfer of Copper from an Amyloid to a Natural Copper-Carrier Peptide with a Specific Mediating Ligand. Chemistry. 2015;21(47):17085-90. https://doi.org/10.1002/chem.201502824
  • Nguyen M, Robert A, Sournia-Saquet A, Vendier L, Meunier B. Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease. Chemistry. 2014;20(22):6771-85. https://doi.org/10.1002/chem.201402143
  • White AR, Du T, Laughton KM, Volitakis I, Sharples RA, Xilinas ME, et al. Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity. J Biol Chem. 2006;281(26):17670-80. https://doi.org/10.1074/jbc.M602487200
  • Carboni E, Tatenhorst L, Tonges L, Barski E, Dambeck V, Bahr M, et al. Deferiprone Rescues Behavioral Deficits Induced by Mild Iron Exposure in a Mouse Model of Alpha-Synuclein Aggregation. Neuromolecular Med. 2017;19(2-3):309-21. https://doi.org/10.1007/s12017-017-8447-9
  • Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, et al. Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron. 2008;59(1):43-55. https://doi.org/10.1016/j.neuron.2008.06.018
  • Şekeroğlu ZA, Şekeroğlu V. Oksidatif Mitokondrial Hasar ve Yaşlanmadaki Önemi. Türk Bilimsel Derlemeler Dergisi. 2009;2(2):69-74. [cited May 2023]. Available from: https://dergipark.org.tr/tr/download/article-file/417597
  • Holper L, Ben-Shachar D, Mann JJ. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology. 2019;44(5):837-49. https://doi.org/10.1038/s41386-018-0090-0
  • Cai Q, Tammineni P. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer's Disease. J Alzheimers Dis. 2017;57(4):1087-103. https://doi.org/10.3233/JAD-160726
  • Adiele RC, Adiele CA. Mitochondrial Regulatory Pathways in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis. 2016;53(4):1257-70. https://doi.org/10.3233/JAD-150967
  • Cabezas-Opazo FA, Vergara-Pulgar K, Perez MJ, Jara C, Osorio-Fuentealba C, Quintanilla RA. Mitochondrial Dysfunction Contributes to the Pathogenesis of Alzheimer's Disease. Oxid Med Cell Longev. 2015;509654. https://doi.org/10.1155/2015/509654
  • Poor SR, Ettcheto M, Cano A, Sanchez-Lopez E, Manzine PR, Olloquequi J, et al. Metformin a Potential Pharmacological Strategy in Late Onset Alzheimer’s Disease Treatment. Pharmaceuticals. 2021;14(9):890. https://doi.org/10.3390/ph14090890
  • Bordt EA, Clerc P, Roelofs BA, Saladino AJ, Tretter L, Adam-Vizi V, et al. The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species. Dev Cell. 2017;40(6):583-94.e6. https://doi.org/10.1016/j.devcel.2017.02.020
  • Reddy PH, Manczak M, Yin X. Mitochondria-Division Inhibitor 1 Protects Against Amyloid-beta induced Mitochondrial Fragmentation and Synaptic Damage in Alzheimer's Disease. J Alzheimers Dis. 2017;58(1):147-62. https://doi.org/10.3233/JAD-170051
  • Maezawa I, Hong HS, Wu HC, Battina SK, Rana S, Iwamoto T, et al. A novel tricyclic pyrone compound ameliorates cell death associated with intracellular amyloid-beta oligomeric complexes. J Neurochem. 2006;98(1):57-67. https://doi.org/10.1111/j.1471-4159.2006.03862.x
  • Stojakovic A, Trushin S, Sheu A, Khalili L, Chang SY, Li X, et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol. 2021;4(1):61. https://doi.org/10.1038/s42003-020-01584-y
  • Zhang L, Zhang S, Maezawa I, Trushin S, Minhas P, Pinto M, et al. Corrigendum to "Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer's disease" [EBioMedicine 2 (2015) 294-305]. EBioMedicine. 2019;42:532. https://doi.org/10.1016/j.ebiom.2019.03.062
  • Zhang L, Zhang S, Maezawa I, Trushin S, Minhas P, Pinto M, et al. Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer's Disease. EBioMedicine. 2015;2(4):294-305. https://doi.org/10.1016/j.ebiom.2015.03.009
  • Xiao S, Chan P, Wang T, Hong Z, Wang S, Kuang W, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer's dementia. Alzheimers Res Ther. 2021;13(1):62. https://doi.org/10.1186/s13195-021-00795-7
  • Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression. Cell Res. 2019;29(10):787-803. https://doi.org/10.1038/s41422-019-0216-x
  • Wang T, Kuang W, Chen W, Xu W, Zhang L, Li Y, et al. A phase II randomized trial of sodium oligomannate in Alzheimer's dementia. Alzheimers Res Ther. 2020;12(1):110. https://doi.org/10.1186/s13195-020-00678-3
  • Syed YY. Sodium Oligomannate: First Approval. Drugs. 2020;80(4):441-4. https://doi.org/10.1007/s40265-020-01268-1
  • Syed YY. Correction to: Sodium Oligomannate: First Approval. Drugs. 2020;80(4):445-6. https://doi.org/10.1007/s40265-020-01274-3
  • Wilkins HM, Mahnken JD, Welch P, Bothwell R, Koppel S, Jackson RL, et al. A Mitochondrial Biomarker-Based Study of S-Equol in Alzheimer's Disease Subjects: Results of a Single-Arm, Pilot Trial. J Alzheimers Dis. 2017;59(1):291-300. https://doi.org/10.3233/JAD-170077
  • Seyed Alizadeh Ganji SM, Shafaei SZ, Goudarzi N, Azizi A. Investigating the best mixture extraction systems in the separation of rare earth elements from nitric acid solution using Cyanex272, D2EHPA, and 8-Hydroxyquinoline. Geosystem Engineering. 2015;19(1):32-8. https://doi.org/10.1080/12269328.2015.1084243
  • Silva FLF, Matos WO, Lopes GS. Determination of cadmium, cobalt, copper, lead, nickel and zinc contents in saline produced water from the petroleum industry by ICP OES after cloud point extraction. Analytical Methods. 2015;7(23):9844-9. https://doi.org/10.1039/c5ay01026h
  • Goswami A, Singh AK, Venkataramani B. 8-Hydroxyquinoline anchored to silica gel via new moderate size linker: synthesis and applications as a metal ion collector for their flame atomic absorption spectrometric determination. Talanta. 2003;60(6):1141-54. https://doi.org/10.1016/S0039-9140(03)00218-2
  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863-73. https://doi.org/10.1038/nrn1537
  • Thompson MG, Corey BW, Si Y, Craft DW, Zurawski DV. Antibacterial activities of iron chelators against common nosocomial pathogens. Antimicrob Agents Chemother. 2012;56(10):5419-21. https://doi.org/10.1128/AAC.01197-12
  • Gal S, Zheng H, Fridkin M, Youdim MB. Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res. 2010;17(1):15-27. https://doi.org/10.1007/s12640-009-9070-9
  • Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008;60(13-14):1527-33. https://doi.org/10.1016/j.addr.2008.06.002
  • Benkler C, Offen D, Melamed E, Kupershmidt L, Amit T, Mandel S, et al. Recent advances in amyotrophic lateral sclerosis research: perspectives for personalized clinical application. EPMA J. 2010;1(2):343-61. https://doi.org/10.1007/s13167-010-0026-1
  • Wang Q, Zhang X, Chen S, Zhang X, Zhang S, Youdium M, et al. Prevention of motor neuron degeneration by novel iron chelators in SOD1(G93A) transgenic mice of amyotrophic lateral sclerosis. Neurodegener Dis. 2011;8(5):310-21. https://doi.org/10.1159/000323469
  • Weinreb O, Mandel S, Bar-Am O, Yogev-Falach M, Avramovich-Tirosh Y, Amit T, et al. Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer's disease drugs. Neurotherapeutics. 2009;6(1):163-74. https://doi.org/10.1016/j.nurt.2008.10.030
  • Zheng H, Youdim MB, Fridkin M. Selective acetylcholinesterase inhibitor activated by acetylcholinesterase releases an active chelator with neurorescuing and anti-amyloid activities. ACS Chem Neurosci. 2010;1(11):737-46. https://doi.org/10.1021/cn100069c
  • Zhang C, Wang L, Xu Y, Huang Y, Huang J, Zhu J, et al. Discovery of novel dual RAGE/SERT inhibitors for the potential treatment of the comorbidity of Alzheimer's disease and depression. European Journal of Medicinal Chemistry. 2022;236: 114347. https://doi.org/10.1016/j.ejmech.2022.114347
  • Patel DV, Patel NR, Kanhed AM, Teli DM, Patel KB, Joshi PD, et al. Novel carbazole-stilbene hybrids as multifunctional anti-Alzheimer agents. Bioorganic Chemistry. 2020;101: 103977. https://doi.org/10.1016/j.bioorg.2020.103977