Caristi type fixed point theorems in fuzzy metric spaces

In this paper, we extend the generalized Caristi's fixed point theorem proved by Bollenbacher and Hicks to $p$-orbitally complete fuzzy metric spaces by considering the fuzzy metric spaces in the sense of George and Veeramani. We also give some illustrative examples that support our results.

___

  • T. Abdeljawad and E. Karapınar, Quasicone metric spaces and generalizations of Caristi Kirk’s theorem, Fixed Point Theory Appl. Vol. 2009, ID 574387, 9 p, 2009.
  • Ö. Acar and I. Altun, Some generalizations of Caristi type fixed point metric spaces, Filomat 26(4), 833-837, 2012.
  • Ö. Acar, I. Altun and S. Romaguera, Caristi’s type mappings on complete partial metric spaces, Fixed Point Theory 14(1), 3-10, 2013.
  • R.P. Agarwal and M.A. Khamsi, Extension of Caristi’s fixed point theorem to vector valued metric spaces, Nonlinear Anal. 74, 141-145, 2011.
  • I. Altun and D. Mihet, Ordered non-archimedean fuzzy metric spaces and some fixed point results, Fixed Point Theory Appl. Vol. 2010, ID 782680, 11 p., 2010.
  • J.S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl. 284, 690-697, 2003.
  • A. Bollenbacher and T.L. Hicks, A fixed point theorem revisited, Proc. Amer. Math. Soc. 102, 898-900, 1988.
  • J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215, 241-251, 1976.
  • L. Ciric, Periodic and fixed point theorems in a quasi-metric space, J. Austral. Math. Soc. Ser. A 54, 80-85, 1993.
  • Z. Deng, Fuzzy pseudometric spaces, J. Math. Anal. Appl. 86, 74-95, 1982.
  • C. Di Bari and C. Vetro, A fixed point theorem for a family of mappings in a fuzzy metric space, Rend. Circ. Mat. Palermo 52, 315-321, 2003.
  • C. Di Bari and C. Vetro, Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space, J. Fuzzy Math. 13, 973-982, 2005.
  • I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47, 324-353, 1974.
  • M.A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69, 205-230, 1979.
  • A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64, 395-399, 1994.
  • A. George and P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy Math. 3, 933-940, 1995.
  • A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90, 365-368, 1997.
  • M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27, 385-389, 1988.
  • V. Gregori, A. López-Crevillén, S. Morillas, and A. Sapena, On convergence in fuzzy metric spaces, Topology Appl. 156, 3002-3006, 2009.
  • V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems 115, 485-489, 2000.
  • V. Gregori and S. Romaguera, Characterizing completable fuzzy metric spaces, Fuzzy Sets and Systems 144, 411-420, 2004.
  • V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125, 245-252, 2002.
  • A.M. Harder and L.M. Saliga, Periodic and fixed point theorems in $d$-complete topological spaces, Indian J. Pure Appl. Math. 26, 787-796, 1995.
  • T.L. Hicks, Fixed point theorems for quasi-metric spaces, Math. Japon. 33, 231-236, 1988.
  • T.L. Hicks, Fixed point theorems for $d$-complete topological spaces I, Internat. J. Math. Math. Sci. 15, 435-440, 1992.
  • C. Ionescu, Sh. Rezapour and M.E. Samei, Fixed points of a class of contractive-type multifunctions on fuzzy metric spaces, U.P.B. Sci. Bull., Series A 76, 3-12, 2014.
  • J.R. Jachymski, Caristi’s fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl. 227, 55-67, 1998.
  • O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44, 381-391, 1996.
  • O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12, 215- 229, 1984.
  • E. Karapınar, Generalizations of Caristi Kirk’s theorem on partial metric spaces, Fixed Point Theory Appl. 2011:4, 2011.
  • E. Karapınar, I.M. Erhan and A. Öztürk, Fixed point theorems on quasi-partial metric spaces, Math. Com. Mod. 57, 2442-2448, 2013.
  • H. Karayılan and M. Telci, Common fixed point theorems for contractive type mappings in a fuzzy metric spaces, Rend. Circ. Mat. Palermo 60, 145-152, 2011.
  • M.A. Khamsi, Remarks on Caristi’s fixed point theorem, Nonlinear Anal. 71, 227-231, 2009.
  • I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11, 336-344, 1975.
  • D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144, 431-439, 2004.
  • D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems 158, 915-921, 2007.
  • J. Rodríguez-López and S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems 147, 273-283, 2004.
  • S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. Vol. 2010, ID 493298, 6 p, 2010.
  • I. Schweizer and A. Sklar, Statistical metric spaces, Pac. J. Math. 10, 314-334, 1960.
  • T. Suzuki, Generalized Caristi’s fixed point theorems by Bae and others, J. Math. Anal. Appl 302, 502-508, 2005.
  • R. Vasuki, A common fixed point theorem in a fuzzy metric space, Fuzzy Sets and Systems 97, 395-397, 1998.
  • C. Vetro and P. Vetro, Common fixed points for discontinuous mappings in fuzzy metric spaces, Rend. Circ. Mat. Palermo 57, 295-303, 2008.