On QF rings and artinian principal ideal rings
In this work we give sufficient conditions for a ring $R$ to be quasi-Frobenius, such as $R$ being left artinian and the class of injective cogenerators of $R$-Mod being closed under projective covers. We prove that $R$ is a division ring if and only if $R$ is a domain and the class of left free $R$-modules is closed under injective hulls. We obtain some characterizations of artinian principal ideal rings. We characterize the rings for which left cyclic modules coincide with left cocyclic $R$-modules. Finally, we obtain characterizations of left artinian and left coartinian rings.
___
- A. Alvarado-García, C. Cejudo-Castilla, H.A. Rincón Mejía, I.F. Vilchis-Montalvo,
On classes of modules closed under injective hulls and artinian principal ideal rings,
Int. Electron. J. Algebra 15, 1-12, 2014.
- A. Alvarado-García, C. Cejudo-Castilla, H.A. Rincón-Mejía, I.F. Vilchis-Montalvo,
Pseudocomplements and strong pseudocomplements in lattices of module classes, J.
Algebra Appl. 17 (1), 1850016 (14 pages), 2018.
- A. Alvarado-García, H.A. Rincón-Mejía, J. Ríos-Montes, On some lattices of module
classes, J. Algebra Appl. 5 (1), 105-117, 2006.
- A. El Mejdani, H. Essannouni, A. Kaidi, Rings with nice artinian modules, Int. J.
Algebra. 2 (18), 895-904, 2008.
- C. Faith, On Köthe rings, Math. Annalen 164, 207-212, 1966.
- C. Faith, Algebra II, Ring Theory, Grundlehren der Matematischen Wissenschaften
191, Springer-Verlag, 1976.
- L. Shen and J.L. Chen, On strong Goldie dimension, Comm. Algebra 35, 3018-3025,
2007.