On QF rings and artinian principal ideal rings

In this work we give sufficient conditions for a ring $R$ to be quasi-Frobenius, such as $R$ being left artinian and the class of injective cogenerators of $R$-Mod being closed under projective covers. We prove that $R$ is a division ring if and only if $R$ is a domain and the class of left free $R$-modules is closed under injective hulls. We obtain some characterizations of artinian principal ideal rings. We characterize the rings for which left cyclic modules coincide with left cocyclic $R$-modules. Finally, we obtain characterizations of left artinian and left coartinian rings.

___

  • A. Alvarado-García, C. Cejudo-Castilla, H.A. Rincón Mejía, I.F. Vilchis-Montalvo, On classes of modules closed under injective hulls and artinian principal ideal rings, Int. Electron. J. Algebra 15, 1-12, 2014.
  • A. Alvarado-García, C. Cejudo-Castilla, H.A. Rincón-Mejía, I.F. Vilchis-Montalvo, Pseudocomplements and strong pseudocomplements in lattices of module classes, J. Algebra Appl. 17 (1), 1850016 (14 pages), 2018.
  • A. Alvarado-García, H.A. Rincón-Mejía, J. Ríos-Montes, On some lattices of module classes, J. Algebra Appl. 5 (1), 105-117, 2006.
  • A. El Mejdani, H. Essannouni, A. Kaidi, Rings with nice artinian modules, Int. J. Algebra. 2 (18), 895-904, 2008.
  • C. Faith, On Köthe rings, Math. Annalen 164, 207-212, 1966.
  • C. Faith, Algebra II, Ring Theory, Grundlehren der Matematischen Wissenschaften 191, Springer-Verlag, 1976.
  • L. Shen and J.L. Chen, On strong Goldie dimension, Comm. Algebra 35, 3018-3025, 2007.