Convolutions of the bi-periodic Fibonacci numbers
Let $q_n$ be the bi-periodic Fibonacci numbers, defined by $q_n=c(n)q_{n-1}+q_{n-2}$ ($n\ge 2$) with $q_0=0$ and $q_1=1$, where $c(n)=a$ if $n$ is even, $c(n)=b$ if $n$ is odd, where $a$ and $b$ are nonzero real numbers. When $c(n)=a=b=1$, $q_n=F_n$ are Fibonacci numbers. In this paper, the convolution identities of order $2$, $3$ and $4$ for the bi-periodic Fibonacci numbers $q_n$ are given with binomial (or multinomial) coefficients, by using the symmetric formulas.
___
- [1] T. Agoh and K. Dilcher, Convolution identities and lacunary recurrences for Bernoulli
numbers, J. Number Theory, 124, 105–122, 2007.
- [2] T. Agoh and K. Dilcher, Higher-order recurrences for Bernoulli numbers, J. Number
Theory, 129, 1837–1847, 2009.
- [3] T. Agoh and K. Dilcher, Higher-order convolutions for Bernoulli and Euler polyno-
mials, J. Math. Anal. Appl. 419, 1235–1247, 2014.
- [4] M. Alp, N. Irmak and L. Szalay, Two-Periodic ternary recurrences and their Binet-
formula, Acta Math. Univ. Comenianae 2, 227–232, 2012.
- [5] C. Cooper, Some identities involving differences of products of generalized Fibonacci
numbers, Colloq. Math. 141 (1), 45–49, 2015.
- [6] K. Dilcher and C. Vignat, General convolution identities for Bernoulli and Euler
polynomials, J. Math. Anal. Appl. 435, 1478–1498, 2016.
- [7] M. Edson and O. Yayenie, A new generalization of Fibonacci sequences and extended
Binet’s Formula, Integers, 9 (A48), 639-654, 2009.
- [8] N. Irmak and L. Szalay, On k-periodic binary recurrences, Ann. Math. Inform. 40,
25–35, 2012.
- [9] T. Komatsu, Higher-order convolution identities for Cauchy numbers of the second
kind, Proc. Jangjeon Math. Soc. 18, 369–383, 2015.
- [10] T. Komatsu, Higher-order convolution identities for Cauchy numbers, Tokyo J. Math.
39, 225–239, 2016.
- [11] T. Komatsu, Convolution identities for Tribonacci numbers, Ars Combin. 136, 199–
210, 2018.
- [12] T. Komatsu and R. Li, Convolution identities for Tribonacci numbers with symmetric
formulae, Math. Rep. (Bucur.) 21 (1), 27-47, 2019, arXiv:1610.02559.
- [13] T. Komatsu, Z. Masakova and E. Pelantova, Higher-order identities for Fibonacci
numbers, Fibonacci Quart. 52 (5), 150-163, 2014.
- [14] T. Komatsu and G.K. Panda, On several kinds of sums involving balancing and Lucas-
balancing numbers, Ars Combin. (to appear). arXiv:1608.05918.
- [15] T. Komatsu and P.K. Ray, Higher-order identities for balancing numbers,
arXiv:1608.05925, 2016.
- [16] T. Komatsu and Y. Simsek, Third and higher order convolution identities for Cauchy
numbers, Filomat 30, 1053–1060, 2016.
- [17] R. Li, Convolution identities for Tetranacci numbers, arXiv:1609.05272.
- [18] J.L. Ramírez, Bi-periodic incomplete Fibonacci sequences, Ann. Math. Inform. 42,
83–92, 2013.
- [19] W. Wang, Some results on sums of products of Bernoulli polynomials and Euler
polynomials, Ramanujan J. 32, 159–186, 2013.
- [20] O. Yayenie, A note on generalized Fibonacci sequence, Applied. Math. Comp. 217
(12), 5603–5611, 2011.