On submanifolds of Kenmotsu manifold with Torqued vector field
In this paper, we consider the submanifold $M$ of a Kenmotsu manifold $\tilde M$ endowed with torqued vector field $\mathcal{T}$. Also, we study the submanifold $M$ admitting a Ricci soliton of both Kenmotsu manifold $\tilde M$ and Kenmotsu space form $\tilde M(c)$. Indeed, we provide some necessary conditions for which such a submanifold $M$ is an $\eta-$Einstein. We have presented some related results and classified. Finally, we obtain an important characterization which classifies the submanifold $M$ admitting a Ricci soliton of Kenmotsu space form $\tilde M(c)$.
___
- [1] C. S. Bagewadi, and G. Ingalahalli, Ricci Solitons in Lorentzian α−Sasakian Manifolds,
Acta Math. Acad. Paedagog. Nyházi. (N.S), 28 (1), 59-68, 2012.
- [2] C. L. Bejan and M. Crasmareanu, Second Order Parallel Tensors and Ricci Solitons
in 3-Dimensional Normal Paracontact Geometry, Ann. Glob. Anal. Geom., 46 , 117-
127, 2014.
- [3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics,
509, Springer-Verlag, Berlin, 1976.
- [4] B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- [5] B.-Y. Chen, Some Results on Concircular Vector Fields and Their Applications to
Ricci Solitons, Bull. Korean Math. Soc., 52 (5), 1535-1547, 2015.
- [6] B.-Y. Chen, Rectifying Submanifolds of Riemannian Manifolds and Torqued Vector
Fields, Kragujevac J. Math., 41 (1), 93-103, 2017.
- [7] B.-Y. Chen, Classification of Torqued Vector Fields and Its Applications to Ricci
Solitons, Kragujevac J. Math., 41 (2), 239-250, 2017.
- [8] J. T. Cho and J. Park, Gradient Ricci Solitons with Semi-Symmetry, Bull. Korean
Math. Soc., 51 (1), 213-219, 2014.
- [9] A. Ghosh, Certain Contact Metrics as Ricci Almost Solitons, Results Maths., 65,
81-94, 2014.
- [10] A. Ghosh, Kenmotsu 3-Metric as a Ricci Soliton, Chaos, Solitons & Fractals, 44 (8),
647-650, 2011.
- [11] R. S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Diff. Geom., 17
(2), 255-306, 1982.
- [12] R. S. Hamilton, The Ricci Flow on Surfaces, Mathematics and General Relativity
(Santa Cruz, CA, 1986), Contemp. Math., A.M.S, 71, 237-262, 1988.
- [13] S. K. Hui, S. K. Yadav and A. Patra, Almost Conformal Ricci Solitons on
f−Kenmotsu Manifolds, Khayyam J. Math., 5 (1), 89-104, 2019.
- [14] J.-B. Jun, U. C. De and G. Pathak, On Kenmotsu Manifolds, J. Korean Math. Soc.,
42 (3), 435-445, 2005.
- [15] K. Kenmotsu, A Class of Almost Contact Riemannian Manifolds, Tohoku Math. J.,
24, 93-103, 1972.
- [16] H. G. Nagaraja and C. R. Premalatha, Ricci Solitons in Kenmotsu Manifolds, J.
Math. Anal., 3 (2), 18-24, 2012.
- [17] S. Y. Perktaş and S. Keleş, Ricci Solitons in 3-Dimensional Normal Almost Paracontact
Metric Manifolds, Int. Electron. J. Geom., 8 (2), 34-45, 2015.
- [18] R. Sharma, Certain Results on K-Contact and (k, μ)−Contact Manifolds, J. Geom.,
89, (1-2), 138-147, 2008.
- [19] R. Sharma and A. Ghosh, Sasakian 3-Manifolds as a Ricci Soliton Represents the
Heisenberg Group, Int. J. Geom. Methods Mod. Phys, 8 (1), 149-154., 2011.
- [20] S. Sular and C. Özgür, On Some Submanifolds of Kenmotsu Manifolds, Chaos, Solitons
& Fractals, 4 (2), 1990-1995, 2009.
- [21] M. M. Tripathi, Ricci Solitons in Contact Metric Manifolds, arXiv:0801.4222v1,
[math DG], 2008.
- [22] K. Yano and M. Kon, Structures on Manifolds, Series in Mathematics, World Scientific
Publishing, Springer, 1984.
- [23] H. İ. Yoldaş, Ş. E. Meriç, E. Yaşar, On Generic Submanifold of Sasakian Manifold
with Concurrent Vector Field, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.,
68 (2), 1983-1994, 2019.