A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator

The main objective of the present paper is to define a subclass $Q_{q}(\lambda,\mu,A,B)$ of analytic functions by using subordination along with the newly defined $q$-analogue of Choi-Saigo-Srivastava operator. Such results as coefficient estimates, integral representation, linear combination, weighted and arithmetic means, and radius of starlikeness for this class are derived.**********************************************************************************************************************************

___

  • [1] H. Aldweby and M. Darus, Some subordination results on q-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal. 2014, 1–9, 2014.
  • [2] F.M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 2004, 1419–1436, 2004.
  • [3] F.M. Al-Oboudi, On classes of functions related to starlike functions with respect to symmetric conjugate points defined by a fractional differential operator, Complex Anal. Oper. Theory, 5, 647–658, 2011.
  • [4] F.M. Al-Oboudi and K.A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl. 399, 655–667, 2008.
  • [5] G.A. Anastassiou and S.G. Gal, Geometric and approximation properties of generalized singular integrals in the unit disk, J. Korean Math. Soc. 23, 425–443, 2006.
  • [6] A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput. Anal. Appl. 8, 249–261, 2006.
  • [7] A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput. Anal. Appl. 8, 249–261, 2006.
  • [8] A. Aral and V. Gupta, On q-Baskakov type operators, Demonstr. Math. 42, 109–122, 2009.
  • [9] A. Aral and V. Gupta, Generalized q-Baskakov operators, Math. Slovaca, 61, 619–634, 2011.
  • [10] S.Z.H. Bukhari, M. Nazir, and M. Raza, Some generalisations of analytic functions with respect to 2k-symmetric conjugate points, Maejo Int. J. Sci. Technol. 10, 1–12, 2016.
  • [11] M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math. 43, 475–487, 2017.
  • [12] S. Hussain, S. Khan, M.A. Zaighum, and M. Darus, Applications of a q-Salagean type operator on multivalent functions, J. Inequal. Appl. 2018, Art. 301, 2018.
  • [13] F.H. Jackson, On q-functions and a certain difference operator, Earth Environ. Sci. Tran. R. Soc. Edinb. 46, 253–281, 1909.
  • [14] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41, 193–203, 1910.
  • [15] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28, 297–326, 1973.
  • [16] S. Kanas and D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64, 1183–1196, 2014.
  • [17] M.-S. Liu, On a subclass of p-valent close to convex functions of type α and order β, J. Math. Study 30, 102–104, 1997.
  • [18] S. Mahmood and J. Sokol, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math. 71, 1–13, 2017.
  • [19] M. Naeem, S. Hussain, T. Mahmood, S. Khan, and M. Darus, A new subclass of analytic functions defined by using Salagean q-differential operator, Mathematics, 7, 458–469, 2019.
  • [20] K.I. Noor, On new classes of integral operator, J. Natur. Geom. 16, 71–80, 1999.
  • [21] K.I. Noor and M. A. Noor, On integral operators, J. Math. Anal. Appl. 238, 341–352, 1999.
  • [22] K.I. Noor, N. Khan, and Q.Z. Ahmad, Some properties of multivalent spiral-like functions, Maejo Int. J. Sci. Technol. 12, 139–151, 2018.
  • [23] M. Sabil, Q.Z. Ahmad, B. Khan, M. Tahir, and N. Khan, Generalisation of certain subclasses of analytic and bi-univalent functions, Maejo Int. J. Sci. Technol. 13, 1–9, 2019.
  • [24] F.M. Sakar and S.M. Aydoˇgan, Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions, Appl. Math. Comput. 319, 461–468, 2018.
  • [25] F.M. Sakar and S.M. Aydoˇgan, Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions defined by convolution, Acta Univ. Apulensis Math. Inform. 55, 11–21, 2018.
  • [26] Z. Shareef, S. Hussain, and M. Darus, Convolution operator in geometric functions theory, J. Inequal. Appl. 2012, Art. 213, 2012.
  • [27] H.M. Srivastava, S. Khan, Q.Z. Ahmad, N. Khan, and S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babes-Bolyai Math. 63, 419–436, 2018.