A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator
The main objective of the present paper is to define a subclass $Q_{q}(\lambda,\mu,A,B)$ of analytic functions by using subordination along with the newly defined $q$-analogue of Choi-Saigo-Srivastava operator. Such results as coefficient estimates, integral representation, linear combination, weighted and arithmetic means, and radius of starlikeness for this class are derived.**********************************************************************************************************************************
___
- [1] H. Aldweby and M. Darus, Some subordination results on q-analogue of Ruscheweyh
differential operator, Abstr. Appl. Anal. 2014, 1–9, 2014.
- [2] F.M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator,
Int. J. Math. Math. Sci. 2004, 1419–1436, 2004.
- [3] F.M. Al-Oboudi, On classes of functions related to starlike functions with respect
to symmetric conjugate points defined by a fractional differential operator, Complex
Anal. Oper. Theory, 5, 647–658, 2011.
- [4] F.M. Al-Oboudi and K.A. Al-Amoudi, On classes of analytic functions related to
conic domains, J. Math. Anal. Appl. 399, 655–667, 2008.
- [5] G.A. Anastassiou and S.G. Gal, Geometric and approximation properties of generalized
singular integrals in the unit disk, J. Korean Math. Soc. 23, 425–443, 2006.
- [6] A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput.
Anal. Appl. 8, 249–261, 2006.
- [7] A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput.
Anal. Appl. 8, 249–261, 2006.
- [8] A. Aral and V. Gupta, On q-Baskakov type operators, Demonstr. Math. 42, 109–122,
2009.
- [9] A. Aral and V. Gupta, Generalized q-Baskakov operators, Math. Slovaca, 61, 619–634,
2011.
- [10] S.Z.H. Bukhari, M. Nazir, and M. Raza, Some generalisations of analytic functions
with respect to 2k-symmetric conjugate points, Maejo Int. J. Sci. Technol. 10, 1–12,
2016.
- [11] M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to
conic domains involving q-calculus, Anal. Math. 43, 475–487, 2017.
- [12] S. Hussain, S. Khan, M.A. Zaighum, and M. Darus, Applications of a q-Salagean type
operator on multivalent functions, J. Inequal. Appl. 2018, Art. 301, 2018.
- [13] F.H. Jackson, On q-functions and a certain difference operator, Earth Environ. Sci.
Tran. R. Soc. Edinb. 46, 253–281, 1909.
- [14] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41, 193–203, 1910.
- [15] W. Janowski, Some extremal problems for certain families of analytic functions, Ann.
Polon. Math. 28, 297–326, 1973.
- [16] S. Kanas and D. Raducanu, Some class of analytic functions related to conic domains,
Math. Slovaca, 64, 1183–1196, 2014.
- [17] M.-S. Liu, On a subclass of p-valent close to convex functions of type α and order β,
J. Math. Study 30, 102–104, 1997.
- [18] S. Mahmood and J. Sokol, New subclass of analytic functions in conical domain
associated with Ruscheweyh q-differential operator, Results Math. 71, 1–13, 2017.
- [19] M. Naeem, S. Hussain, T. Mahmood, S. Khan, and M. Darus, A new subclass of
analytic functions defined by using Salagean q-differential operator, Mathematics, 7,
458–469, 2019.
- [20] K.I. Noor, On new classes of integral operator, J. Natur. Geom. 16, 71–80, 1999.
- [21] K.I. Noor and M. A. Noor, On integral operators, J. Math. Anal. Appl. 238, 341–352,
1999.
- [22] K.I. Noor, N. Khan, and Q.Z. Ahmad, Some properties of multivalent spiral-like
functions, Maejo Int. J. Sci. Technol. 12, 139–151, 2018.
- [23] M. Sabil, Q.Z. Ahmad, B. Khan, M. Tahir, and N. Khan, Generalisation of certain
subclasses of analytic and bi-univalent functions, Maejo Int. J. Sci. Technol. 13, 1–9,
2019.
- [24] F.M. Sakar and S.M. Aydoˇgan, Subclass of m-quasiconformal harmonic functions in
association with Janowski starlike functions, Appl. Math. Comput. 319, 461–468,
2018.
- [25] F.M. Sakar and S.M. Aydoˇgan, Coefficient bounds for certain subclasses of m-fold
symmetric bi-univalent functions defined by convolution, Acta Univ. Apulensis Math.
Inform. 55, 11–21, 2018.
- [26] Z. Shareef, S. Hussain, and M. Darus, Convolution operator in geometric functions
theory, J. Inequal. Appl. 2012, Art. 213, 2012.
- [27] H.M. Srivastava, S. Khan, Q.Z. Ahmad, N. Khan, and S. Hussain, The Faber polynomial
expansion method and its application to the general coefficient problem for some
subclasses of bi-univalent functions associated with a certain q-integral operator, Stud.
Univ. Babes-Bolyai Math. 63, 419–436, 2018.