Delta operation on modules, prime and radical submodules and primary decomposition

Let $R$ be a commutative ring with identity and $M$ be an $R$-module. In this paper, in order to study prime submodules, radical submodules and primary decompositions in finitely generated free $R$-modules, we introduce and study an operation $\Delta: (M\oplus R)^2\to M$ defined by $\Delta(m+r, m'+r')= r'm-rm'$. In particular, using this operation we give a characterization of prime submodules of $M\oplus R$, in terms of prime submodules of $M$. As an application, we present a characterization of prime submodules of finitely generated free modules. Also we present a formula for the prime radical of submodules of $M\dis R$. Moreover, we state some conditions under which primary decompositions of submodules of $M$ lift to $M\oplus R$.

___

  • [1] M. Alkan and Y. Tıraş, On prime submodules, Rocky Mount. J. Math. 37 (3), 709– 722, 2007.
  • [2] B. Amini and A. Amini, On strongly superfluous submodules, Comm. Algebra 40 (8), 2906–2919, 2012.
  • [3] A. Azizi, Radical formula and prime submodules, J. Algebra 307, 454–460, 2007.
  • [4] A. Azizi, Prime submodules of artinian modules, Taiwanese J. Math. 13 (6B), 2011– 2020, 2009.
  • [5] A. Azizi, Radical formula and weakly prime submodules, Glasgow Math. J. 51, 405– 412, 2009.
  • [6] A. Azizi and A. Nikseresht, Simplified radical formula in modules, Houston J. Math. 38 (2), 333–344, 2012.
  • [7] M. Behboodi and H. Koohi, Weakly prime modules, Vietnam J. Math. 32, 185–195, 2004.
  • [8] S. Çeken and M. Alkan, On Prime submodules and primary decomposition in twogenerated free modules, Taiwanese J. Math. 17 (1), 133–142, 2013.
  • [9] J. Jenkins and P.F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (12), 3593–3602, 1992.
  • [10] K.H. Leung and S.H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J. 39, 285–293, 1997.
  • [11] S.H. Man, One dimensional domains which satisfy the radical formula are Dedekind domains, Arch. Math. 66, 276–279, 1996.
  • [12] S.H. Man, On commutative Noetherian rings which satisfy the generalized radical formula, Comm. Algebra 27 (8), 4075–4088, 1999.
  • [13] R. McCasland and M.E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1), 37–39, 1986.
  • [14] R.L. McCasland and P.F. Smith, Zariski spaces of modules over arbitrary rings, Comm. Algebra 34, 3961–3973, 2006.
  • [15] F. Mirzaei and R. Nekooei, On prime submodules of a finitely generated free module over a commutative ring, Comm. Algebra 44 (9), 3966–3975, 2016.
  • [16] M.E. Moore and S.J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra 30 (10), 5037–5064, 2002.
  • [17] A. Nikseresht and A. Azizi, On radical formula in modules, Glasgow Math. J. 53, 657–668, 2011.
  • [18] A. Nikseresht and A. Azizi, Envelope dimension of modules and the simplified radical formula, Canad. Math. Bull. 56 (4), 683–694, 2013.
  • [19] A. Parkash, Arithmetical rings satisfy the radical formula, J. Commut. Algebra 4 (2), 293–296, 2012.
  • [20] D. Pusat-Yilmaz and P. F. Smith, Modules which satisfy the radical formula, Acta. Math. Hungar. 95, 155-167, 2002.
  • [21] P. F. Smith, Primary modules over commutative rings, Glasgow Math. J. 43, 103–111, 2001.
  • [22] Y. Tıraş and M. Alkan, Prime modules and submodules, Comm. Algebra 31 (11), 5263–5261, 2003.