Yük Dengelenme Prensiplerinin Küçük Moleküllerin Oluşumundaki Geçerliliği

C hattaraj ve çalışma arkadaşları tarafından ortaya konulan Elektrofilikliğin Dengelenmesi İlkesi Szentpaly tarafından değerlendirilmiştir. Bu çalışmada yük dengelenme süreçlerinin ve geometrik ortalama denklemlerinin küçük moleküllerin oluşumu için geçerli olduğu, fakat büyük moleküllerde başarılı olmadığı gösterilmiştir. Kaya, moleküler sertlik ve moleküler elektronegatiflik denklemleri kullanılarak elde edilen elektrofiliklik değerleri ve geometrik ortalama denklemleri kullanılarak elde edilen elektrofiliklik değerleri arasındaki kayda değer uyum, Chattaraj’ın sunduğu Elektrofilikliğin dengelenmesi ilkesinin gözardı edilemeyecek bir ilke olduğunu ve küçük moleküllerin oluşumunda geçerli olduğunu göstermiştir

Validation of the Charge Equalization Principles during the Formation of Small Molecules

The electrophilicity equalization principle recently presented by Chattaraj and his co-workers has been criti- cized by Szentpaly. In the present report, we found that the charge equalization process for small molecule is successfully depicted by the geometrical mean models but for very big molecules the existing geometrical mean models failed to depict the charge equalization scenario. The expressed good agreement between the results obtained from our equation and the results obtained from geometric mean equation vide supra, leads us to conclude that Chattaraj’s geometric mean equation and other equalization principles are still useful and cannot be ignored completely.

___

  • 1. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, U.K. 1989.
  • 2. R.M. Dreizler, E.K.U. Gross, Density Functional Theory; Springer-Verlag: Berlin, 1990.
  • 3. P. K. Chattaraj, Chemical Reactivity Theory: A Density Functional View; Taylor & Francis/CRC Press: Boca Raton, 2009.
  • 4. R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc., 105 (1983) 7512-7516.
  • 5. R.G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry, Inorg. Chem., 27 (1988) 734-740.
  • 6. R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory, Proc. Natl. Acad. Sci. USA., 83 (1986) 8440-8441.
  • 7. R.G Pearson, Chemical hardness and bond dissociation energies, J. Am. Chem., Soc., 110 (1988) 7684-7690.
  • 8. W. Kohn, A.D. Becke, R.G. Parr, Density functional theory of electronic structure, J. Phys. Chem., 100 (1996) 12974-12980.
  • 9. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, Electronegativity: the density functional viewpoint, J. Chem. Phys., 68 (1978) 3801-3807.
  • 10. H. Chermette, Chemical reactivity indexes in density functional theory, J. Comp. Chem., 20 (1999) 129-154.
  • 11. R.T. Sanderson, Chemical Bond and Bond Energy, Academic Press, New York, 1976.
  • 12. R.T Sanderson, Electronegativities in inorganic chemistry:(II), J. Chem. Edu., 31(1954) 2.
  • 13. R.G. Pearson, Chemical Hardness: Applications from Molecules to Solids, Wiley-VCH: Weinheim, Germany, 1997.
  • 14. D.C. Ghosh, N. Islam, A quest for the algorithm for evaluating the molecular hardness, Int. J. Quant. Chem., 111 (2011) 1931-1941.
  • 15. N. Islam, D.C. Ghosh, Hardness Equalization in the formation poly atomic carbon compounds, Chapter 13 Carbon Bonding and Structures: Advances in Physics and Chemistry, Springer, Editor: Dr. Mihai V. Putz, Carbon Materials: Chemistry and Physics, Volume 5, 301-319.
  • 16. R.G. Pearson, Recent advances in the concept of hard and soft acids and bases, J. Chem. Edu. 64 (1987) 561.
  • 17. R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc., 85 (1963) 3533-3539.
  • 18. P.K. Chattaraj, H. Lee, R.G. Parr, HSAB Principle, J. Am. Chem. Soc., 113 (1991) 1855-1856.
  • 19. T.L. Ho, Hard soft acids bases (HSAB) principle and organic chemistry, Chemical Reviews, 75 (1975) 1-20.
  • 20. R.G. Parr, P.K. Chattaraj, Principle of Maximum Hardness, J. Am. Chem. Soc., 113 (1991) 1854-1855.
  • 21. R.G. Pearson, The Principle of Maximum Hardness Acc. Chem. Res., 26 (1993) 250-255.
  • 22. R.G. Pearson, W.E. Palke, Support for a principle of maximum hardness, J. Phys. Chem., 96 (1992) 3283- 3285.
  • 23. D. Datta, Geometric mean principle for hardness eualization: a corollary of Sanderson’s geometric mean principle of electronegativity equalization, J. Phys. Chem., 90 (1986) 4216-4217.
  • 24. P.K. Chattaraj, S. Giri, S. Duley, Electrophilicity equalization principle, J. Phys. Chem. Lett., 1 (2010) 1064-1067.
  • 25. R.G. Parr, L.V. Szentpaly, S. Liu, Electrophilicity index, J. Am. Chem. Soc., 121 (1999) 1922-1924.
  • 26. L. von Szentpály, Ruling out any electrophilicity equalization principle, J. Phys. Chem., A, 115 (2011) 8528-8531.
  • 27. P.K. Chattaraj, S. Giri, S. Duley, Comment on “Ruling out any electrophilicity equalization principle, J. Phys. Chem. A, 116 (2011) 790-791.
  • 28. L.V. Szentpály, Reply to “Comment on’Ruling Out Any Electrophilicity Equalization Principle, J. Phys. Chem. A, 116 (2011) 792-795.
  • 29. T.K. Ghanty and S.K. Ghosh, A density functional approach to hardness, polarizability, and valency of molecules in chemical reactions, J. Phys. Chem., 100 (1996) 12295-12298.
  • 30. D. Datta, N.K. Shee, L.V. Szentpály, Chemical potential of molecules contrasted to averaged atomic electronegativities: alarming differences and their theoretical rationalization, J. Phys. Chem., 117 (2012) 200-206.
  • 31. R.G. Pearson, Electronegativity Scales, Acc. Chem. Res., 23 (1990) 1-2.
  • 32. L.C. Allen, Electronegativity Scales, Acc. Chem. Res., 23 (1990) 175-176.
  • 33. P. Politzer, M.E. Grice, J.S. Murray, Electronegativities, electrostatic potentials and covalent radii, J. Mol. Struc. (Theochem), 549 (2001) 69-76.
  • 34. P. Politzer, Z. Peralta- Inga Shields, F.A. Bulat, J.S. Murray, Average local ionization energies as a route to intrinsic atomic electronegativities, J. Chem. Theory Comput., 7 (2011) 377-384.
  • 35. P. Politzer, J.S. Murray, M.E. Grice, Electronegativity and average local ionization energy, Collect. Czech. Chem. Commun., 70 (2005) 550-558.
  • 36. R.P. Iczkowski, J.L. Margrave, Electronegativity, J. Am. Chem. Soc., 83 (1961) 3547-3551.
  • 37. S. Kaya, C. Kaya, New equation based on ionization energies and electron affinities of atoms for calculating of group electronegativity, Computational and Theoretical Chemistry., 1054 (2015) 42-46.
  • 38. S. Kaya, C. Kaya, A new equation for calculation of chemical hardness of groups and molecules, Mol. Phys., 113 (2015) 1311-1319.
  • 39. N. Islam, D.C. Ghosh, On the electrophilic character of molecules through its relation with electronegativity and chemical hardness, Int. J. Mol. Sci., 13 (2012) 2160-2175.
  • 40. D.C. Ghosh, N. Islam, Whether there is a hardness equalization principle analogous to the electronegativity equalization principle—A quest, Int. J. Quant. Chem., 111 (2011) 1961-1969.
  • 41. J.L. Gazquez and F. Mendez, The Hard and Soft Acids and Bases Principle: An Atoms in Molecules Viewpoint, J. Phys. Chem., 98 (1994) 4591-4593.
  • 42. S. Kaya, C. Kaya, A new method for calculation of molecular hardness: a theoretical study, Comp. Theor. Chem., 1060 (2015) 66-70.
  • 43. S. Kaya, C. Kaya, Derivation of ionization energy and electron affinity equations using chemical hardness and absolute electronegativity in isoelectronic series, J. Phys. Theor. Chem., 11 (2015) 155-163.
  • 44. S. Kaya, C. Kaya, Investigation of relationship with electron configuration of chemical hardness, absolute electronegativity and electrophilicity, J. Phys. Theor. Chem., 11 (2014) 1-13.
  • 45. S. Kaya, S.E. Kariper, A. Ungördü, C. Kaya, Effect of some electron donor and electron acceptor groups on stability of complexes according to the principle of HSAB, J. Result. Sci., 4 (2014) 82.
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi
Sayıdaki Diğer Makaleler

Çamur Yuva Yapan Yaban Arısı, Sceliphron destillatorium Hymenoptera: Sphecidae ’un Larva, Pupa, Ergin ve Avlarının Yağ Asidi Kompozisyonu

Yaşar GÜLMEZ, Mahfuz ELMASTAŞ, Ömer KAYIR, İlyas CAN

Satureja boissieri Uçucu Yağının Antimikrobiyal, Antiproliferatif ve Antioksidan Özelliklerinin Araştırılması

Feyza Öke ALTUNTAŞ, İbrahim DEMİRTAŞ

Tohma Vadisi (Sivas-Malatya, Türkiye) Flora Listesi

Birol MUTLU, Şükrü KARAKUŞ

Dört İstiridye Mantar Türlerinin Besin Değeri, Yüksek Basidiomycetes

Mustafa Nadhim OWAİD, Idham Ali ABED, Sajid Salahuddin Saleem AL-SAEEDİ

İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik destekli Bulutlanma Noktası Ekstraskisyonu ve Zenginlerştirme Yöntemi

Ramazan GÜRKAN, Nail ALTUNAY

“Click” Kimyası ile Poli(vinil klorür–graft–etilen glikol) Graft Kopolimerlerin Sentezi ve Karakterizasyonu

Temel ÖZTÜRK, Nilgün ASAN

Tohma Vadisi Sivas-Malatya, Türkiye Flora Listesi

Şükrü KARAKUŞ, Birol MUTLU

Elektron Salıcı ve Electron Çekici Grup İçeren Schiff Bazı Polimer Boyaların Sentez ve Karakterizasyonu

Dilek ŞENOL

Yük Dengelenme Prensiplerinin Küçük Moleküllerin Oluşumundaki Geçerliliği

Savaş KAYA, Cemal KAYA, Nazmul ISLAM, Ime Bassey OBOT

Yeni Bir Manyetik Tek-atom Asetat Köprülü Schiff Bazı -Bakır(II) Kompleksinin Kristallografik, EPR ve DFT ile İncelenmesi

Serkan DEMİR, Ersin TEMEL, Mustafa ÖZTÜRK, Yusuf YERLİ, Hasan SARAL, Serkan BAŞGEL