THE SHORT-TERM EFFECTS OF WHEAT STRAW CELLULOSE ON SOIL CARBON MINERALIZATION

THE SHORT-TERM EFFECTS OF WHEAT STRAW CELLULOSE ON SOIL CARBON MINERALIZATION

Cellulosic wastes constitute the majority of agricultural fields. The purpose of this study was to utilize these cellulosic wastes such as wheat straw and wheat straw cellulose on soil carbon mineralization in a sandy loam soils. Two different doses (100 and 1000 mg) of wheat straw cellulose were used to determine the carbon mineralization using CO2 respiration method. The cumulative carbon mineralization was found to be highest at the minumum doses of wheat straw cellulose with nitrogen (W-CL-N, 19.65 mg) and the lowest at the maximum doses of wheat straw (W-Straw, 14.32 mg). The results showed that the application of wheat straw cellulose at minumum doses resulted in higher carbon mineralization rate. The maximum carbon mineralization rate was observed in soil with minimum wheat straw cellulose and nitrogen source were added (1.41%). Whereas, the minimum carbon mineralization rate was determined in the soil mixed maximum wheat straw (1.03 %). The soil mixed maximum wheat straw was determined the lowest carbon mineralization rate due to its complex structure. The use of nitrogen source and organic matter with cellulose have positive effect on soil carbon mineralization. It might be said that these results describe an effective way for disposal of organic wastes.

___

  • FAO, 2018. ” Food and Agriculture Organization of the United Nations”, http://www.fao.org/faostat/en/#data/EE (erişim tarihi: 07.03.2018)
  • A. Alçiçek, A. Kılıç, V. Ayhan, M. Özdoğan, Türkiyede Kaba Yem Üretimi Ve Sorunları. TMMOB Ziraat Mühendisleri Odası, VII. Teknik Kongresi Bildiriler Kitabı -1, 11-15 Ocak 2010 Milli Kütüphane Kongre Salonu ANKARA.
  • N. Kizildag, C. Darici H. A. Sagliker, Influence of Different Parent Materials on Litter Decomposition in the East Mediterranean Region. Pak. J. Bot. 46 (2014) 875-879.
  • K.E. Eriksson, R.A. Blanchette, P. Ander, Biodegradation of lignin. In Microbial and enzymatic dagradation of wood and wood components, (1990), 225-333. Springer-Verlag KG, Berlin.
  • V. Siracusa, Microbial Degradation of Synthetic Biopolymers Waste. Polymers (Basel), 11 (2019), 1066.
  • M. Alexander, Introduction to soil microbiology New York, USA John Wiley & Sons, 1977.
  • T. Foyle, L. Jennings, P. Mulcahy, Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw. Biores. Tech.98 (2007) 3026-3036.
  • R. Schaefer, Characters et evolution des activites microbiennes dans une chaine de sols hidromarphes mesotrophiques de la plaine d’ Alsace. Revue d’écologie et de biologie du sol 4 (1967), 567-592.
  • C. Benlot, Recherches sur les activites biochimiques dans les successions de sols derives de cendres volcaniques sous climat tropical humide (Zaire-Indonesie). Paris, France (1977) ENS Lab de Zoologie (in French).
  • D.G. Kleinbaum, L.L. Kupper, K.E. Muller, A. Nizam, Applied Regression Analysis and Other Multivariable Methods.Duxbury Press, (1998) Pacific Grove, CA, USA.
  • R. Sun, J.M. Lawther, W.B. Banks, Fractional and structural characterization of wheat straw hemicelluloses. Carbohydr. Polym. 49 (1999) 415-423.
  • D.Y. Corredor, Pretreatment and enzymatic hydrolysis of lignocellulosic biomass. National University of Colombia, 2000 MS. Kansas State University, (2008).
  • M. Gök, K. Doğan, A. Coşkan, Effects of divers organic substrate application on denitrification and soil respiration under different plant vegetation in Çukurova Region. International Symposium on Water and Land Management for Sustainable Irrigated Agriculture. April 4-8, (2006), Adana-Turkey.
  • K. Doğan, A. Sariyev, M. Gök, A. Coşkan, Y. Tülün, S. Sesveren, H. Pamiralan, Effect of solarization under different applications on soil temperature variation and microbial activity. JFAE 11 (1) (2013). 329- 332.
  • S. Javorekova, T. Stevilkova, R. Labuda, P. Ondrıçık, Influence of Xenobiotics on The Biological Soil Activity. JCEA 2 (3-4) (2001) 191- 198.
  • N. A. Halls, and R.G. Board, The Microbial Associations Developing on Experimental Trickling Filters Irrigated with Domestic Sewage. J. Appl. Microbiol. 36 (1973), 465.
  • A.E. Humphry, A. Moreira, W. Armiger, and D. Zabriskie, Production of single cell protein from cellulose wastes. Biotech. Bioeng. Symp. No. 7, (1977) 45.
  • D.E. Koeck, A. Pechtl, V. V. Zverlov, & W. H. Schwarz, Genomics of cellulolytic bacteria. Curr. Opin. Biotechnol 29 (2014) 171–183.
  • M.E. Himmel, Q. Xu, Y. Luo, S.Y. Ding, R. Lamed, E.A. Bayer, Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuel. 1 (2010) 323–341.
  • R.P. Dick, P.E. Rasmussen, and E.A. Kerle,, Influence of long-termresidue management on soil enzyme activity in relation to soil chemical propertiesof a wheat-fallow system. Biol. Fertil. Soils 6 (1988) 159-164.
  • W. Verstraete, and J.P. Voets, Soil microbial and biochemicalcharacteristics in relation to soil management and fertility. Soil Biol. Biochem 9 (1977)253-258.
  • D.A. Martens, J.B. Johanson, and W.T. Frankenberger, Production and persistence of soil enzymes. With repeated additions of organic residues. Soil Sci. 153 (1992) 53-61.
  • D. Jordan, R.J. Kremer, W.A. Bergfield, K.Y. Kim, and V.N. Cacnio, Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biol. Fertil. Soils 25 (1995) 297-302.
  • C. Gougoulias, J. M. Clark, L. J. Shaw, The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agri. 94 (2014) 2362–2371.