COMPARISION OF THE GLIO-PROTECTIVE EFFECTS OF BIOPOLYMER COATED ELECTROSPUN SCAFFOLDS

COMPARISION OF THE GLIO-PROTECTIVE EFFECTS OF BIOPOLYMER COATED ELECTROSPUN SCAFFOLDS

Gliosis is a condition that plays a negative role in various neurological pathologies. In this study, it was aimed to obtain and compare the glio-protective effects of electrospun fibrous scaffolds coated by different biopolymers. First, in vitro gliosis model was obtained by inducing U-87 MG cells with LPS and IFN-γ. The optimized model was applied to U-87 MG cells grown on polycaprolactone (PCL), hyaluronic acid (HA) coated, gelatin coated, and collagen coated PCL scaffolds. Immunofluorescent (IF) staining was performed with glial fibrillary acidic protein (GFAP) antibody to determine the level of gliosis. It was found that 5µg/mL LPS concentration induced gliosis and hyaluronic acid-coated PCL scaffolds have shown a protective effect on gliosis.

___

  • R. Huang, Y. Zhang, B. Han, Y. Bai, R. Zhou, G. Gan, J. Chao, H. Yao, Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG, Autophagy, 13 (2017).
  • Y. Hu, H. Zhang, H. Wei, H. Cheng, J. Cai, X. Chen, L. Xia, H. Wang, R. Chai, Scaffolds with anisotropic structure for neural tissue engineering, Engineered Regeneration, 3 (2022) 154–162.
  • R.A.L. De Sousa, Reactive gliosis in Alzheimer’s disease: a crucial role for cognitive impairment and memory loss, Metab Brain Dis, 37 (2022) 851–857.
  • M. Motavaf, • Majid Sadeghizadeh, • Mohammad Javan, Attempts to Overcome Remyelination Failure: Toward Opening New Therapeutic Avenues for Multiple Sclerosis, Cell Mol Neurobiol, 37 (n.d.).
  • S.C. Yetis, D.A. Ekinci, E. Cakir, E.M. Eksioglu, U.E. Ayten, A. Capar, B.U. Toreyin, B.E. Kerman, Myelin segmentation in fluorescence microscopy images, TIPTEKNO 2019 - Tip Teknolojileri Kongresi, (2019).
  • H. Wang, G. Song, H. Chuang, C. Chiu, A. Abdelmaksoud, Y. Ye, L. Zhao, Portrait of glial scar in neurological diseases, Int J Immunopathol Pharmacol, 31 (2018) 1–6.
  • Y. Wang, H. Tan, X. Hui, Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System, (2018).
  • Q. Zhang, B. Shi, J. Ding, L. Yan, J.P. Thawani, C. Fu, X. Chen, Polymer scaffolds facilitate spinal cord injury repair, Acta Biomater, 88 (2019) 57–77.
  • H. Yin, T. Jiang, X. Deng, M. Yu, H. Xing, X. Ren, A cellular spinal cord scaffold seeded with rat adipose-derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats, Mol Med Rep, 17 (2018) 2998.
  • M. Li, H. Hu, Z. Yu, Y. Ding, Y. Wang, M. Wu, W. Qu, B. Chen, W. Shu, H. Tian, X. Ou, X. Zhang, Polymer-Based Scaffold Strategies for Spinal Cord Repair and Regeneration, (2020).
  • Z. Álvarez, A.N. Kolberg-Edelbrock, I.R. Sasselli, J.A. Ortega, R. Qiu, Z. Syrgiannis, P.A. Mirau, F. Chen, S.M. Chin, S. Weigand, E. Kiskinis, S.I. Stupp, Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury, Science (1979), 374 (2021) 848–856.
  • J.-Z. Yeh, D.-H. Wang, J.-H. Cherng, Y.-W. Wang, G.-Y. Fan, N.-H. Liou, J.-C. Liu, C.-H. Chou, A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury, (n.d.).
  • Y. Liu, H. Ye, K. Satkunendrarajah, G.S. Yao, Y. Bayon, M.G. Fehlings, A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury, (2013).
  • A. Jakobsson, M. Ottosson, M.C. Zalis, D. O’Carroll, U.E. Johansson, F. Johansson, Three-dimensional functional human neuronal networks in uncompressed low-density electrospun fiber scaffolds, Nanomedicine, 13 (2017) 1563–1573.
  • D. Doç Nimet Karagülle Mersin, Doku Mühendisliği Uygulamalari İçin Polivinil Alkol (Pva)/Nişasta Temelli Kriyojel Doku İskelelerinin Geliştirilmesi: Sentez, Karakterizasyon Ve Biyouyumluluk Değerlendirmeleri Doktora Tezi Seda Ceylan Mersin Üniversitesi Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilim Dali, N.D.
  • Y.L. Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü Çok Girişli Elektroeğirme Yöntemiyle Nişasta/Pcl Kompozit Nanofiberlerin Üretilmesi Feyzanur (Bayrak) Sinar Metalurji Ve Malzeme Mühendisliği (Türkçe) Anabilim Dalı, N.D.
  • Bedir Tuba, Nöral Doku Mühendisliği İçin Doku İskelesi Tasarımı Ve Geliştirilmesi, n.d.
  • N. Zhang, U. Milbreta, J.S. Chin, C. Pinese, J. Lin, H. Shirahama, W. Jiang, H. Liu, R. Mi, A. Hoke, W. Wu, S.Y. Chew, Biomimicking Fiber Scaffold as an Effective In Vitro and In Vivo MicroRNA Screening Platform for Directing Tissue Regeneration, Advanced Science, 6 (2019).
  • N. Kaur, W. Han, Z. Li, M.P. Madrigal, S. Shim, S. Pochareddy, F.O. Gulden, M. Li, X. Xu, X. Xing, Y. Takeo, Z. Li, K. Lu, Y. Imamura Kawasawa, B. Ballester-Lurbe, J.A. Moreno-Bravo, A. Chédotal, J. Terrado, I. Pérez-Roger, A.J. Koleske, et al., Neural Stem Cells Direct Axon Guidance via Their Radial Fiber Scaffold, Neuron, 107 (2020) 1197-1211.e9.
  • M.O. Christen, F. Vercesi, Polycaprolactone: How a well-known and futuristic polymer has become an innovative collagen-stimulator in esthetics, Clin Cosmet Investig Dermatol, 13 (2020) 31–48.
  • F. Zamboni, M. Keays, S. Hayes, A.B. Albadarin, G.M. Walker, P.A. Kiely, M.N. Collins, Enhanced cell viability in hyaluronic acid coated poly(lactic-co-glycolic acid) porous scaffolds within microfluidic channels, Int J Pharm, 532 (2017) 595–602.
  • X. Lin, W. Wang, W. Zhang, Z. Zhang, G. Zhou, Y. Cao, W. Liu, Hyaluronic Acid Coating Enhances Biocompatibility of Nonwoven PGA Scaffold and Cartilage Formation, Https://Home.Liebertpub.Com/Tec, 23 (2017) 86–97.
  • I. Özaydin, E. Ünsaldi, Ö. Aksoy, S. Yayla, M. Kaya, M.B. Ulkay Tunali, A. Aktaş, E. Taşdemiroǧlu, M. Cihan, B. Kurt, H.C. Yildirim, A. Şengöz, H. Erdoǧan, Deneysel peri ve epinöral nörorafi uygulanmi{dotless}ş rat modellerinde silikon tüp ve silikon tüp + hyaluronik asit uygulamasi{dotless}ni{dotless}n adezyon formasyonuna etkisi, Kafkas Univ Vet Fak Derg, 20 (2014) 591–597.
  • X. Zhang, W. Qu, D. Li, K. Shi, R. Li, Y. Han, E. Jin, J. Ding, X. Chen, Functional Polymer-Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration, Adv Mater Interfaces, 7 (2020).
  • J. Cao, C. Sun, H. Zhao, Z. Xiao, B. Chen, J. Gao, T. Zheng, W. Wu, S. Wu, J. Wang, J. Dai, The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats, Biomaterials, 32 (2011) 3939–3948.
  • G.K. Saraogi, P. Gupta, U.D. Gupta, N.K. Jain, G.P. Agrawal, Gelatin nanocarriers as potential vectors for effective management of tuberculosis, Int J Pharm, 385 (2010) 143–149.
  • M.A. Alvarez-Perez, V. Guarino, V. Cirillo, L. Ambrosio, Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth, Biomacromolecules, 11 (2010) 2238–2246.
  • A. Kriebel, D. Hodde, T. Kuenzel, J. Engels, G. Brook, J. Mey, Cell-free artificial implants of electrospun fibres in a three-dimensional gelatin matrix support sciatic nerve regeneration in vivo, J Tissue Eng Regen Med, 11 (2017) 3289–3304.
  • M. Naseri-Nosar, S. Farzamfar, H. Sahrapeyma, S. Ghorbani, F. Bastami, A. Vaez, M. Salehi, Cerium oxide nanoparticle-containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: In vitro and in vivo evaluation, Materials Science and Engineering C, 81 (2017) 366–372.
  • F.K. Mediesse, T. Boudjeko, A. Hasitha, M. Gangadhar, W.F. Mbacham, P. Yogeeswari, Inhibition of lipopolysaccharide (LPS)-induced neuroinflammatory response by polysaccharide fractions of Khaya grandifoliola (CDC) stem bark, Cryptolepis sanguinolenta (Lindl) Schltr and Cymbopogon citratus Stapf leaves in raw 2647 macrophages and U87 glioblastoma cells, BMC Complement Altern Med, 18 (2018).
  • M. Potokar, M. Morita, G. Wiche, J. Jorgačevski, cells The Diversity of Intermediate Filaments in Astrocytes, (n.d.).
  • R. Helbok, R. Beer, Cerebrospinal fluid and brain extracellular fluid in severe brain trauma, Handb Clin Neurol, 146 (2018) 237–258.
  • D. Rampe, L. Wang, G.E. Ringheim, P2X7 receptor modulation of β-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia, J Neuroimmunol, 147 (2004) 56–61.
  • T. Fath, D. Lecca, G. Pacheco-Lopez, A. Vargas-Caraveo, D.M. Hermann, M. Sardari, E. Dzyubenko, B. Schmermund, D. Yin, Y. Qi, C. Kleinschnitz, in collaboration with reviewer GP-L Dose-Dependent Microglial and Astrocytic Responses Associated With Post-ischemic Neuroprotection After Lipopolysaccharide-Induced Sepsis-Like State in Mice, (2020).
  • F.K. Mediesse, T. Boudjeko, A. Hasitha, M. Gangadhar, W.F. Mbacham, P. Yogeeswari, BMC Complementary and Alternative Medicine, (n.d.).
  • V.W. Yong, R. Moumdjian, F.P. Yong, T.C.G. Ruijs, M.S. Freedman, N. Cashman, J.P. Antel, yInterferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo, 1991.
  • A. Haque, A. Das, L.M. Hajiaghamohseni, A. Younger, N.L. Banik, S.K. Ray, Induction of apoptosis and immune response by all-trans retinoic acid plus interferon-gamma in human malignant glioblastoma T98G and U87MG cells, Cancer Immunology, Immunotherapy, 56 (2007) 615–625.
  • Ş. Çoğan, Sıçan Kemik İliğinden Ve Yağ Dokusundan Elde Edilen Mezenkimal Kök Hücrelerin Pcl Nanofibröz Yüzeyler Üzerinde Tutunma Ve Çoğalma Özelliklerinin İncelenmesi, Ege Üniversitesi Fen Bilimleri Enstitüsü  , n.d.
  • Q. Yu, Y. Chen, C.-B. Xu, A convenient method for quantifying collagen fibers in atherosclerotic lesions by ImageJ software Original Article A convenient method for quantifying collagen fibers in atherosclerotic lesions by ImageJ software, 2017.
  • F. Bonnier, M.E. Keating, T.P. Wróbel, K. Majzner, M. Baranska, A. Garcia-Munoz, A. Blanco, H.J. Byrne, Cell viability assessment using the Alamar blue assay: A comparison of 2D and 3D cell culture models, Toxicology in Vitro, 29 (2015) 124–131.
  • S. Karmakar, N.L. Banik, S.K. Ray, Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells, Neurochem Res, 32 (2007) 2103–2113.
  • H. Chen, J. Qin, Y. Hu, molecules Efficient Degradation of High-Molecular-Weight Hyaluronic Acid by a Combination of Ultrasound, Hydrogen Peroxide, and Copper Ion, (2019).
  • T. Riaz, R. Zeeshan, F. Zarif, K. Ilyas, N. Muhammad, S.Z. Safi, A. Rahim, S.A.A. Rizvi, I.U. Rehman, FTIR analysis of natural and synthetic collagen, Appl Spectrosc Rev, 53 (2018) 703–746.
  • S. Unal, S. Arslan, B. Karademir Yilmaz, F. Nuzhet Oktar, D. Ficai, A. Ficai, O. Gunduz, materials Polycaprolactone/Gelatin/Hyaluronic Acid Electrospun Scaffolds to Mimic Glioblastoma Extracellular Matrix, Materials, 13 (2020).
  • J.W.M. Heemskerk, M.J.E. Kuijpers, L. Galgano, G.F. Guidetti, M. Torti, I. Canobbio, The Controversial Role of LPS in Platelet Activation In Vitro, (2022).
  • A. Haque, A. Das, L.M. Hajiaghamohseni, A. Younger, N.L. Banik, S.K. Ray, Induction of apoptosis and immune response by all-trans retinoic acid plus interferon-gamma in human malignant glioblastoma T98G and U87MG cells, Cancer Immunology, Immunotherapy, 56 (2007) 615–625.
  • M. Rahmati, C.P. Pennisi, A. Mobasheri, M. Mozafari, Bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine, Adv Exp Med Biol, 1107 (2018) 73–89.
  • W. Shi, X. Zhang, L. Bian, Y. Dai, Z. Wang, Y. Zhou, S. Yu, Z. Zhang, P. Zhao, H. Tang, Q. Wang, X. Lu, Alendronate crosslinked chitosan/polycaprolactone scaffold for bone defects repairing, Int J Biol Macromol, 204 (2022) 441–456.
  • C.E. Campiglio, N.C. Negrini, S. Farè, L. Draghi, Cross-Linking Strategies for Electrospun Gelatin Scaffolds, Materials, 12 (2019).
  • G. Jensen, J.L. Holloway, S.E. Stabenfeldt, Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine, Cells, 9 (2020).
  • C.M. Lin, J.W. Lin, Y.C. Chen, H.H. Shen, L. Wei, Y.S. Yeh, Y.H. Chiang, R. Shih, P.L. Chiu, K.S. Hung, L.Y. Yang, W.T. Chiu, Hyaluronic acid inhibits the glial scar formation after brain damage with tissue loss in rats, Surg Neurol, 72 (2009).
  • A.C. Jimenez-Vergara, R. Van Drunen, T. Cagle, D.J. Munoz-Pinto, Modeling the effects of hyaluronic acid degradation on the regulation of human astrocyte phenotype using multicomponent interpenetrating polymer networks (mIPNs), (2020).