Reaktif Blue 19 Boyasının Topraktan İzole Edilen Bacillus megaterium Tarafından Renginin Giderimi

Bu çalışma da Reactive Blue 19 boyasının Bacillus megaterium (B. megaterium) ile renginin giderimi ve pH, sıcaklık, başlangıç boya konsantrasyonu, azot ve karbon kaynağı gibi parametrelerin renk giderimi üzerindeki etkisinin belirlenmesi amaçlanmıştır. Bu amaçla, izolasyonu yapılan ve genotipik olarak (16S rRNA sekansı) B. megaterium olarak tanımlanan, izolatın Reactive Blue 19’un renk gideriminde etkili olduğu bulunmuştur. %92 giderim ile glukoz en uygun karbon kaynağı olarak saptanmıştır. Azot kaynağının etkisi araştırıldığında %91 ile en yüksek giderim oranı maya özütünde tespit edilmiştir. Önemli parametrelerden bir olan pH’ın etkisine bakıldığında nötral pH değerinde B. megaterium’ un Reactive Blue 19 boyasını renk giderimin %91 oranında gerçekleştirildiği belirlenmiştir. FTIR sonuçlarına göre Reactive Blue 19’un renk gideriminin biyodegradasyon ile gerçekleştiği gözlemlenmiştir. Kimyasal ve fiziksel atık su arıtım metodları biyolojik metodlarla karşılaştırıldığında B. megaterium gibi mikrobiyal kaynaklar etkili ve ekonomik bir alternatif olarak değerlendirilebilir.

Decolorization of Reactive Blue 19 Dye by Bacillus megaterium Isolated from Soil

The principle aim of this study was to decolorize Reactive Blue 19 dye with Bacillus megaterium (B. megaterium) and to determine the effect of some parameters such as pH, temperature, initial dye concentration, nitrogen and carbon sourceson decolorization. With this purpose, a new isolate identified as B. megaterium by genotypic (16S rRNA sequence) characterization, was found effective on Reactive Blue 19 decolorization. Glucose (20g/L) was found as the most suitable carbonsource for Reactive Blue 19 decolorization with a yield of 92%. When the effect of nitrogen sources on decolorization wasinvestigated, the highest dye removal rate was found as 91% which was obtained in shake flask containing yeast extract (10g/L). In trials determining pH effect on dye removal; it was found that B. megaterium enables decolorization of Reactive Blue19 at neutral pHs with a high percentage of 91%. P values were calculated for all parameters and found as p

___

  • 1. R. G. Saratale, G. D. Saratale, J. S. Chang, S. P. Govindwar, Bacterial decolorization and degradation of azo dyes: A review, J. Taiwan Inst. Chem. E, 42 (2011) 138-157.
  • 2. M. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Adv. Colloid Interface Sci., 209 (2014) 172-184.
  • 3. R. Khan, P. Bhawana, M. H. Fulekar, Microbial decolorization and degradation of synthetic dyes: A review, Rev. Environ. Sci. Bio., 12 (2013) 75-97.
  • 4. J. S. Chang, C. Chou, Y. C. Lin, P. J. Lin, J. Y. Ho, T. Lee Hu, Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola, Water Res., 35 (2001) 2841-2850.
  • 5. M. S. Lucas, C. Amaral, A. Sampaio, J. A. Peres, A. A. Dias, Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila, Enzyme Microb. Technol., 39 (2006) 51-55.
  • 6. H. Hayat, Q. Mahmood, A. Pervez, Z. A. Bhatti, S. A. Baig, Comparative decolorization of dyes in textile wastewater using biological and chemical treatment, Sep. Purif. Technol., 154 (2015) 149-153.
  • 7. A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeterior. Biodegradation, 59 (2007) 73-84.
  • 8. M.H. Cui, D. Cui, L. Gao, A.J. Wang, H.Y. Cheng, Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source, Water Res., 105 (2016) 520- 526.
  • 9. M. H. Cui, D. Cui, L. Gao, A. J. Wang, H. Y. Cheng, Evaluation of anaerobic sludge volume for improving azo dye decolorization in a hybrid anaerobic reactor with built-in bioelectrochemical system, Chemosphere, 169 (2017) 18- 22.
  • 10. F. Darvishi, M. Moradi, C. Jolivalt, C. Madzak, Laccase production from sucrose by recombinant Yarrowia lipolytica and its application to decolorization of environmental pollutant dyes, Ecotoxicol. Environ. Saf., 165 (2018) 278-283.
  • 11. X. ling He et al., Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions,” Ecotoxicol. Environ. Saf., 150 (2018) 232-239.
  • 12. [12] A. Sinha, S. Lulu, S. Vino, S. Banerjee, S. Acharjee, W. Jabez Osborne, Degradation of reactive green dye and textile effluent by Candida sp. VITJASS isolated from wetland paddy rhizosphere soil, J. Environ. Chem. Eng., 6 (2018) 5150-5159.
  • 13. M. M. Martorell, H. F. Pajot, J. I. Rovati, L. I. C. Figueroa, Optimization of culture medium composition for manganese peroxidase and tyrosinase production during Reactive Black 5 decolourization by the yeast Trichosporon akiyoshidainum, Yeast, 29 (2012) 137-144.
  • 14. M. Imran et al., Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4, Ecotoxicol. Environ. Saf., 124 (2016) 42-49.
  • 15. C. Lizama, J. Freer, J. Baeza, H. D. Mansilla, Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions, Catal. Today, 76 (2002) 235-246.
  • 16. R. Bourbonnais and M. G. Paice, Oxidation of nonphenolic substrates. An expanded role for laccase in lignin biodegradation., FEBS Lett., 267 (1990) 99-102.
  • 17. M. Tien, T.K. Kirk, Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2- requiring oxygenase., Proc. Natl. Acad. Sci. U. S. A., 81 (1984) 2280-2284.
  • 18. M. Kuwahara, J.K. Glenn, M.A. Morgan, M.H. Gold, Separation and characterization of two extracelluar H2 O2 -dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium,” FEBS Lett.,169 (1984) 247- 250.
  • 19. W. Q. Sun, G. F. Payne, M.S.G.L. Moas, J. H. Chu, K.K. Wallace, Tyrosinase reaction/chitosan adsorption for removing phenols from wastewater, Biotechnol. Prog., 8 (1992) 179- 186.
  • 20. K. Jain, V. Shah, D. Chapla, D. Madamwar, Decolorization and degradation of azo dye Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil, J. Hazard. Mater., 213-214 (2012) 378-386.
  • 21. M. Solís, A. Solís, H.I. Pérez, N. Manjarrez, M. Flores, Microbial decolouration of azo dyes: A review, Process Biochem., 47 (2012) 1723-1748.
  • 22. R.P. Singh, P. K. Singh, R.L. Singh, Bacterial decolorization of textile azo dye acid orange by Staphylococcus hominis RMLRT03., Toxicol. Int., 21 (2014) 160-6.
  • 23. S. Ayyasamy, P.M., Palanivelan, R., Rajakumar, Effect of various carbon and nitrogen sources on decolorization of textile dye remazol golden yellow using bacterial species, J. Environ. Biol., 35 (2015) 781-787.
  • 24. Z. W. Wang, J.S. Liang, Y. Liang, Decolorization of Reactive Black 5 by a newly isolated bacterium Bacillus sp. YZU1, Int. Biodeterior. Biodegrad., 76 (2013) 41-48.
  • 25. S. Ertuğrul Karatay, N. Koçberber Kılıç, G. Dönmez, Removal of Remazol Blue by azoreductase from newly isolated bacteria, Ecol. Eng., 84 (2015) 01-304.
  • 26. K.R. Mahbub, B. Morium, M.M. Ahmed, M.A. Akond, S. Andrews, Decolorization of novacron blue and novacron super black azo dyes by Bacillus spp isolated from textile effluents in Bangladesh, J. Sci. Res. 7 (2015) 45-53.
  • 27. R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Bacterial decolorization and degradation of azo dyes: A review, J. Taiwan Inst. Chem. Eng., 42 (2011) 38–157.
  • 28. D.C. Kalyani, P.S. Patil, J.P. Jadhav, S.P. Govindwar, Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1, Bioresour. Technol., 99 (2008) 4635-4641.
  • 29. L. Ayed, K. Chaieb, A. Cheref, A. Bakhrouf, Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis,” Desalination, 260 (2010) 137-146.