Fenolün Sıvı Faz Oksidasyonu için Mil-53 Katalizörünün Hidrotermal Sentezi

Toksik organik fenol kirleticilerini uzaklaştırmak için yeni bir alternatif oksidasyon katalizörü bulmak uzun zamandan beri önemli bir konudur. Demir tereftalat, yüksek gözenekliliği ve yüksek yüzey alanıyla oksidasyon süreçleri için etkili bir katalizördür. Bu çalışmada, fenol oksidasyonu için MIL-53 kullanılmıştır. Katalizör 2 saatte 150°C'de hidrotermal yöntemle sentezlendi. FT-IR ve toz-XRD ile yapısal olarak karakterize edildi. Termal özellikleri de incelendi. Yüzey alanı, mikrogözenekli alanlarla 152 m2 /g olarak bulundu. Fenolün hidrojen peroksit ile sıvı faz oksidasyonu MIL-53 üzerinde uygulandı. Reaksiyon süresi, reaksiyon sıcaklığı, katalizör miktarı ve yükseltgen miktarı da incelendi. Fenol 80°C'de 3 saatte %91 dönüşümle uzaklaştırıldı. MIL-53, fenolün sıvı faz oksidasyonu için yüksek verimlilik, seçicilik ve dönüşüm ile alternatif bir katalizör olarak geliştirildi.

Hydrothermal Synthesis of MIL-53 Catalyst for Liquid Phase Oxidation of Phenol

For the removal of toxic organic phenol pollutants, to find a new alternative oxidation catalyst has been an importanttopic for a long time. Iron terephthalate (MIL-53) is an efficient catalyst for oxidation processes with high porosity andhigh surface area. In this study, MIL-53 was used for the oxidation of phenol. The catalyst was synthesized by hydrothermalmethod at 150°C for 2 h. It was structurally characterized by FT-IR and p-XRD. Thermal properties were also examined. Thesurface area was found as 152 m2/g with micropore areas. The liquid phase oxidation of phenol by hydrogen peroxide wasperformed on MIL-53. The reaction time, reaction temperature, catalyst amount and oxidant amount were also investigated.The phenol was removed with 91% conversion for 3 hours at 80°C. MIL-53 was enhanced as an alternative catalyst for liquidphase oxidation of phenol with high efficiency, selectivity, and conversion.

___

  • 1. B. Hameed, A. Rahman, Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material, J. Hazard. Mater., 160 (2008) 576- 581.
  • 2. B. Van der Bruggen, C. Vandecasteele, Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry, Environ. Pollut., 122 (2003) 435-445.
  • 3. W. Kujawski, A. Warszawski, W. Ratajczak, T. Porebski, W. Capała, I. Ostrowska, Removal of phenol from wastewater by different separation techniques, Desalination, 163 (2004) 287-296.
  • 4. M. Pimentel, N. Oturan, M. Dezotti, M.A. Oturan, Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode, Appl. Catal. B, 83 (2008) 140-149.
  • 5. N.K. Swamy, P. Singh, I.P. Sarethy, Precipitation of phenols from paper industry wastewater using ferric chloride, Rasayan J. Chem., 4 (2011) 452-456.
  • 6. A. Benhadji, M.T. Ahmed, R. Maachi, Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba, Desalination, 277 (2011) 128-134.
  • 7. S. Rasalingam, R. Peng, R.T. Koodali, Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials, J. Nanomater., 2014 (2014) 10.
  • 8. I. Oller, S. Malato, J. Sánchez-Pérez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review, Sci. Total Environ., 409 (2011) 4141-4166.
  • 9. A.D. Bokare, W. Choi, Review of iron-free Fenton-like systems for activating H2 O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121-135.
  • 10. C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack, J. Catal., 122 (1990) 178-192.
  • 11. H.S. Wahab, A.A. Hussain, Photocatalytic oxidation of phenol red onto nanocrystalline TiO2 particles, J. Nanostructure Chem., 6 (2016) 261-274.
  • 12. W. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna, G. Mailhot, Assessment of the Fe (III)–EDDS complex in Fentonlike processes: from the radical formation to the degradation of bisphenol A, Environ. Sci. Technol., 47 (2013) 1952-1959.
  • 13. N. Gao, Y. Deng, D. Zhao, Ametryn degradation in the ultraviolet (UV) irradiation/hydrogen peroxide (H2 O2 ) treatment, J. Hazard. Mater., 164 (2009) 640-645.
  • 14. L. Xu, J. Wang, Fenton-like degradation of 2, 4-dichlorophenol using Fe3O4 magnetic nanoparticles, Appl. Catal. B, 123 (2012) 117-126.
  • 15. N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst, Chem. Eng. J., 112 (2005) 191-196.
  • 16. M. Kasiri, H. Aleboyeh, A. Aleboyeh, Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photoFenton catalyst, Appl. Catal., B, 84 (2008) 9-15.
  • 17. A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation, Chem. Commun., 53 (2017) 10851-10869.
  • 18. B.N. Bhadra, I. Ahmed, S.H. Jhung, Remarkable adsorbent for phenol removal from fuel: functionalized metal–organic framework, Fuel, 174 (2016) 43-48.
  • 19. A.M. Ghaedi, M. Panahimehr, A.R.S. Nejad, S.J. Hosseini, A. Vafaei, M.M. Baneshi, Factorial experimental design for the optimization of highly selective adsorption removal of lead and copper ions using metal organic framework MOF-2 (Cd), J. Mol. Liq., 272 (2018) 15-26.
  • 20. E. Rahimi, N. Mohaghegh, New hybrid nanocomposite of copper terephthalate MOF-graphene oxide: synthesis, characterization and application as adsorbents for toxic metal ion removal from Sungun acid mine drainage, Environ. Sci. Pollut. Res. Int., 24 (2017) 22353-22360.
  • 21. I.Y. Skobelev, A.B. Sorokin, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Solvent-free allylic oxidation of alkenes with O2 mediated by Fe-and Cr-MIL-101, J. Catal., 298 (2013) 61-69.
  • 22. Y. Horiuchi, T. Toyao, K. Miyahara, L. Zakary, D. Do Van, Y. Kamata, T.-H. Kim, S.W. Lee, M. Matsuoka, Visible-lightdriven photocatalytic water oxidation catalysed by ironbased metal–organic frameworks, Chem. Commun., 52 (2016) 5190-5193.
  • 23. L. Ai, C. Zhang, L. Li, J. Jiang, Iron terephthalate metal– organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation, Appl. Catal., B, 148 (2014) 191-200.
  • 24. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater., 9 (2010) 172.
  • 25. M. Pilloni, F. Padella, G. Ennas, S. Lai, M. Bellusci, E. Rombi, F. Sini, M. Pentimalli, C. Delitala, A. Scano, Liquid-assisted mechanochemical synthesis of an iron carboxylate Metal Organic Framework and its evaluation in diesel fuel desulfurization, Microporous Mesoporous Mater., 213 (2015) 14-21.
  • 26. F. Millange, N. Guillou, R.I. Walton, J.-M. Grenèche, I. Margiolaki, G. Férey, Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks, Chem. Commun., (2008) 4732-4734.
  • 27. M. Alhamami, H. Doan, C.-H. Cheng, A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption, Materials, 7 (2014) 3198-3250.
  • 28. B. Saifutdinov, V. Isaeva, E. Alexandrov, L. Kustov, Study of selective adsorption of aromatic compounds from solutions by the flexible MIL-53 (Al) metal-organic framework, Russ. Chem. Bull., 64 (2015) 1039-1048.
  • 29. E.V. Rokhina, J. Virkutyte, Environmental application of catalytic processes: heterogeneous liquid phase oxidation of phenol with hydrogen peroxide, Crit. Rev. Environ. Sci. Technol., 41 (2010) 125-167.
  • 30. Q. Sun, M. Liu, K. Li, Y. Han, Y. Zuo, J. Wang, C. Song, G. Zhang, X. Guo, Controlled synthesis of mixed-valent Fe-containing metal organic frameworks for the degradation of phenol under mild conditions, Dalton Trans., 45 (2016) 7952-7959.