Naproksen Türevi ile ct-DNA’nın Etkileşim Özellikleri

Naproksenin bir türevi (NH) ile ct-DNA’nın etkileşim türü absorpsiyon ve floresans spektroskopisi ile incelendi. Deneysel sonuçlar, naproksen türevi ile ct-DNA arasında oluğa bağlanma sonucunda statik sönüm gerçekleştiğini ortaya koymuştur. Hesaplamalı yöntemler de etkileşimin daha detaylı anlaşılması için kullanılmıştır. Moleküler kenetlenme hesaplamaları, NH ve ct-DNA arasındaki etkileşimin oluğa tutunma üzerinden olduğunu göstermiştir. Spektral verilere ek olarak, kenetlenme çalışmaları NH-A_DNA ve NH-B_DNA komplekslerinin her bir DNA izomerine özgü farklı etkileşim ve konformasyon eğilimlerine sahip olduğunu göstermiştir.

Naproxen Derivative Interaction Properties with ct-DNA

Interaction mode of a naproxen derivative (NH) with ct-DNA was explored by absorption and fluorescence spectroscopy.The experimental results revealed the static quenching as a result of groove binding between the naproxen derivativeand ct-DNA. Computational studies were carried out to a deeper understanding of the interactions. Molecular dockingcalculations showed that the interaction between NH and ct-DNA is resulted by groove binding. In addition to spectral data,docking studies revealed that NH-A_DNA and NH-B_DNA complexes had different interaction and conformational trendsto each DNA isomer.

___

  • 1. M.A. Husain, Z. Yaseen, S.U. Rehman, T. Sarwar, and M. Tabish, Naproxen Intercalates with DNA and Causes Photocleavage Through ROS Generation, The FEBS Journal, 24 (2013) 65 69–6580.
  • 2. K. Gurova, New hopes from old drugs: revisiting DNAbinding small molecules as anticancer agents, Future Oncol., 5 (2009) 1685–1704.
  • 3. D.R. Boer, A. Canals, and M. Coll, DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes, Dalton Trans., 3 (2009) 399-414.
  • 4. U. Pindur, M. Jansen, and T. Lemster, Advances in DNAligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology, Curr. Med. Chem., 12 ( 2005) 2805-2847.
  • 5. L. Strekowskı and B. Wılson, Noncovalent interactions with DNA: an overview, Mutat Res-Fund Mol M., 623 (2007) 3–13.
  • 6. J. Li, B. Li, Y. Wu, S. Shuang, C. Dong, and M. Choi, Luminescence and binding properties of two isoquinoline alkaloids chelerythrine and sanguinarine with ctDNA, Spectrochim Acta A Mol. Biomol. Spectrosc., 95 (2012) 80–85.
  • 7. Y. Temerk, M. Ibrahim, H. Ibrahim, and M. Kotb, Interactions of an anticancer drug Formestane with single and doublestranded DNA at physiological conditions, J. Photochem. Photobiol. B., 149 (2012) 27–36.
  • 8. L. J. Marnett and A. S. Kalgutkar, Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents, Curr. Opin. Chem. Biol., 2 (1998) 482–490.
  • 9. A.S. Kalgutkar, A.B. Marnett, B.C. Crews, R.P. Remmel, and L. J. Marnett, Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors, J. Med. Chem., 43 (2000) 2860–2870.
  • 10. Y.C. Kim, Y. Karton, X.D. Ji, N. Melman, J. Linden, and K. A. Jacobson, Acyl‐hydrazide derivatives of a xanthine carboxylic congener (XCC) as selective antagonists at human A2B adenosine receptors, Drug Dev. Res., 47 (1999) 178–188.
  • 11. M. Nakka, M.S. Begum, B.F.M. Varaprasad, L.V. Reddy, A. Bhattacharya, M. Helliwell, Naproxen and ibuprofen based acyl hydrazone derivatives: Synthesis, structure analysis and cytotoxicity studies. J. Chem. Pharm. Res., 2 (2010) 393-409.
  • 12. D. Sarigol, A. Uzgoren-Baran, B.C. Tel, E.I. Somuncuoglu, I. Kazkayasi, K. Ozadali-Sari, et al., Novel thiazolo [3, 2-b]-1, 2, 4-triazoles derived from naproxen with analgesic/antiinflammatory properties: Synthesis, biological evaluation and molecular modeling studies, Bioorg. Med. Chem., 23 (2015) 2518–2528.
  • 13. S. Ozkan, T. Taskin Tok, A. Uzgoren Baran, and N. Akbay, Multispectroscopic and Computational Investigation of ct-DNA Binding Properties with Hydroxybenzylidene Containing Tetrahydrocarbazole Derivative, J. Fluoresc., (2018) 1–10.
  • 14. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, J. Comput. Chem., 30 (2009) 2785-2791.
  • 15. J.R. Lakowicz, Plasmonics in biology and plasmon-controlled fluorescence, Plasmonics, 1 (2006) 5-33.
  • 16. Y.Q. Wang, H.M. Zhang, G.C. Zhang, Studies of the interaction between palmatine hydrochloride and human serum albumin by fluorescence quenching method, J. Pharmaceut. Biomed., 41 (2006) 1041-1046.
  • 17. M. Wu, W. Wu, X. Lian, X. Lin, and Z. Xie, Synthesis of a novel fluorescent probe and investigation on its interaction with nucleic acid and analytical application, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71 (2008) 1333–1340.
  • 18. H.G. Li, Z.Y. Yang, B.D. Wang, and J.C. Wu, Synthesis, crystal structure, antioxidation and DNA-binding properties of the Ln complexes with 1-phenyl-3-methyl-5-hydroxypyrazole4-carbaldhyde-(benzoyl) hydrazone, J. Organomet. Chem., 695 (2010) 415–422.
  • 19. I. Ahmad, A. Ahmad, M. Ahmad, Binding properties of pendimethalin herbicide to DNA: multispectroscopic and molecular docking approaches, Phys. Chem. Chem. Phys., 18 (2016) 6476-85.
  • 20. Y.T. Sun, S.Y. Bi, D.Q. Song, C.Y. Qiao, D. Mu, H.Q. Zhang, Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi, Sensor. Actuat. B-Chem., 129 (2008) 799-810.
  • 21. P.D. Ross, S. Subramanian, Thermodynamics of Protein Association Reactions - Forces Contributing to Stability, Biochemistry-Us, 20 (1981) 3096-102.
  • 22. S.Y. Bi, L.L. Yan, Y.T. Sun, H.Q. Zhang, Investigation of ketoprofen binding to human serum albumin by spectral methods, Spectrochim. Acta A., 78 (2011) 410-414.