$MnO_2$ /Aktif Karbon Elektrotlar ile Üretilen Süperkapasitörlerin Elektrokimyasal Performans

Fıstık kabuklarından piroliz ve kimyasal aktivasyon teknikleri kullanılarak yüksek yüzey alanına sahip aktif karbon üretilerek, bu aktif karbonun yüzeyinde $MnO_2$sentezlendi. Aktif karbonlar elektrot olarak kullanılarak süperkapasitörler fabrike edildi ve sabit akım şarj-deşarj, kendiliğinden boşalma ve çevrim ömrü testleri gerçekleştirildi. $MnO_2$yüklemesi yüzey alanında azalmaya yol açmıştır. Gözenek hacim dağılımı hesaplamaları sentezlenen $MnO_2$parçacıklarının nanometre boyutunda olduğunu göstermiştir. $MnO_4$ -iyonlarının aktif karbon yüzeyinde $MnO_2$ ’ye yükseltgenmesi nedeni ile yüzeyde oksijen içeren fonksiyonlu grupların sayısında değişim olmuştur. $MnO_2$yüklemesi yüzey alanı düşüşüne sebep olmasına rağmen, spesifik kapasitansın 49 F/g’dan 68 F/g’a çıkmasına yol açmıştır.

Electrochemical Performance of Fabricated Supercapacitors Using $MnO_2$ /Activated Carbon Electrodes

Peanut shells were subjected to pyrolysis and chemical activation to produce activated carbon with high specific surfacearea. $MnO_2$ particles were synthesized on the activated carbon surface. Supercapacitors were fabricated by usingactivated carbon electrodes and tested by constant current charge-discharge, self-discharge, and life-cycle tests. $MnO_2$loading led to a significant decrease in specific surface area. The pore volume distribution calculations revealed that the$MnO_2$ particles were in nanometer size. Because of the reduction of $MnO_4$- Ions to $MnO_2$ over the activated carbon surface,the amount of oxygen-containing surface functional groups, changed. Although the $MnO_2$ loading caused a decrease insurface area, the specific capacitance increased from 49 F/g to 68 F/g.

___

  • 1. E. Bayram, Electrosoption of aromatic organic acids from aqueous solutions onto granular activated carbon electrodes for water purification, Hacettepe J. Biol. Chem., 3 (2016) 273-273.
  • 2. C. Haktanır, Removal of heavy metals from aqueus solution using activated carbon embedded cryogels, Hacettepe J. Biol. Chem., 1 (2017) 135-142.
  • 3. S. Baş, Ö. Hakli, A.G. Dumanli, Y. Yürüm, PAN-based pd-doped activated carbon fibers for hydrogen storage : preparation , a new method for chemical activation and characterization of fibers, Hacettepe J. Biol. Chem. 36 (2008) 247-253.
  • 4. H. Jüntgen, Activated carbon as catalyst support, Fuel, 65 (1986) 1436–1446.
  • 5. R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn, Carbon aerogels for electrochemical applications, J. Non. Cryst. Solids., 225 (1998) 74-80.
  • 6. E. Frackowiak, Carbon materials for supercapacitor application., Phys. Chem. Chem. Phys., 9 (2007) 1774-785.
  • 7. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, J. Mater. Chem. 38 (2009) 2520- 2531.
  • 8. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. Chem. Soc. Rev., 41 (2012) 797-828.
  • 9. S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem., 22 (2012) 767.
  • 10. P.T. Williams, A.R. Reed, Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste, Biomass and Bioenergy., 30 (2006) 144–152.
  • 11. M.J. Prauchner, F. Rodríguez-Reinoso, Chemical versus physical activation of coconut shell: A comparative study, Microporous Mesoporous Mater., 152 (2012) 163-171.
  • 12. M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, a Review of metal oxide composite electrode materials for electrochemical capacitors, J. World Sci., 9 (2014) 1-25.
  • 13. D. Deng, B.-S. Kim, M. Gopiraman, I.S. Kim, Needle-like MnO2 / activated carbon nanocomposites derived from human hair as versatile electrode materials for supercapacitors, RSC Adv., 5 (2015) 81492-81498.
  • 14. T. Yumak, D. Bragg, E.M. Sabolsky, Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications, Appl. Surf. Sci. 469 (2019) 983-993.
  • 15. M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors, Energy Environ. Sci., 3 (2010) 1294-1301.
  • 16. V. Khomenko, E. Frackowiak, F. Beguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations, Electrochim. Acta., 50 (2005) 2499-2506.
  • 17. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069.
  • 18. H. Peng, G. Ma, K. Sun, J. Mu, Z. Zhang, Z. Lei, Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application, ACS Appl. Mater. Interfac., 6 (2014) 20795-20803.
  • 19. K.C. Kemp, S. Bin Baek, W.G. Lee, M. Meyyappan, K.S. Kim, Activated carbon derived from waste coffee grounds for stable methane storage, Nanotechnology, 26 (2015).
  • 20. J. Ma, Z. Zhu, B. Chen, M. Yang, H. Zhou, C. Li, F. Yu, J. Chen, One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal, J. Mater. Chem. A, 1 (2013) 4662-4666.
  • 21. W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, X. Li, 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor, Sci. Rep., 7 (2017) 1-11.
  • 22. Z. Wu, X.L. Huang, Z.L. Wang, J.J. Xu, H.G. Wang, X.B. Zhang, Electrostatic induced stretch growth of homogeneous β-Ni(OH)2on graphene with enhanced high-rate cycling for supercapacitors, Sci. Rep., 4 (2014) 1-8.
  • 23. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies, J. Phys. Chem. C, 115 (2011) 17009-17019.
  • 24. S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon N. Y., 35 (1997) 1799-1810.
  • 25. X. Chang, X. Zhai, S. Sun, D. Gu, L. Dong, Y. Yin, Y. Zhu, MnO2/g-C3N4 nanocomposite with highly enhanced supercapacitor performance, Nanotechnology, 28 (2017) 135705-135714.
  • 26. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi, MnO2 - embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors, J. Phys. Chem. B, 110 (2006) 6015-6019.
  • 27. C. Zequine, C.K. Ranaweera, Z. Wang, P.R. Dvornic, P.K. Kahol, S. Singh, P. Tripathi, O.N. Srivastava, S. Singh, B.K. Gupta, G. Gupta, R.K. Gupta, High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach, Sci. Rep., 7 (2017) 1-12.
  • 28. J.F. Shen, Y.J. He, Z.F. Ma, A systematical evaluation of olynomial based equivalent circuit model for charge redistribution dominated self-discharge process in supercapacitors, J. Power Sour., 303 (2016) 294-304.
  • 29. M. Minakshi, Examining manganese dioxide electrode in koh electrolyte using TEM technique, J. Electroanal. Chem., 616 (2008) 99-106.