Lizozim Saflaştırılması İçin Heparin İmmobilize Edilmiş poli(2-hidroksi etilmetakrilat) Kriyojeller

Yumurta akından lizozim saflaştırılması için heparin immobilize edilmiş poli(hidroksi etilmetakrilat) (PHEMA) kriyojeller sentezlenmiştir. İlk olarak, PHEMA kriyojeller kriyopolimerizasyon yöntemi ile sentezlenmiştir. Heparin, siyanojen bromür aktivasyonu ile PHEMA kriyojeline kovalent olarak immobilize edilmiştir. PHEMA kriyojel yapısının heparin ile modifikasyonu Fourier dönüşümlü kızıl ötesi spektroskopisi (FTIR) ile incelenmiştir. PHEMA kriyojellerin yüzey ve iç yapı morfolojileri taramalı elektron mikroskobu (SEM) ile karakterize edilmiştir. PHEMA kriyojelin yüzey alanı 25.2 m2 /g olarak bulunmuştur. Heparin immobilize edilmiş PHEMA kriyojeller lizozim adsorpsiyon çalışmalarında pH, lizozim derişimi, akış hızı, sıcaklık ve iyonik şiddetin etkilerini incelemek için kullanılmıştır. Optimum koşullar altında, heparin immobilize edilmiş PHEMA kriyojelin sulu çözeltide en yüksek lizozim adsorpsiyonu 48.73 mg/g olarak bulunmuştur. Sürekli sistemde lizozimin desorpsiyonu için 1.0 M NaCI çözeltisi kullanılmıştır. Heparin immobilizasyonuna heparin derişiminin etkisi incelenmiştir. Heparin immobilize edilmiş PHEMA kriyojellerin tekrar kullanılabilirliği adsorpsiyon-desorpsiyon döngüsü 10 kez tekrarlanarak test edilmiştir. Langmuir adsorpsiyon modeli çizilmiş ve adsorpsiyon çalışmaları için uygun bulunmuştur. Yumurta akından lizozim saflığı %12 ayırıcı jel kullanılarak sodyum-dodesil sülfat poliakrilamid jel elektroforezi kullanılarak analiz edilmiştir.

Biologically Modified poly(2-hydroxylethyl methacrylate) Cryogels for Lysozyme Purification

Heparin immobilized poly(2-hydroxylethyl methacrylate) PHEMA cryogel was synthesized and applied for lysozymepurification from egg white. Firstly, the PHEMA cryogel was synthesized by cryopolymerization and then heparin wascovalently immobilized on to the PHEMA cryogel with cyanogen bromide activation. The modification of PHEMA cryogelstructure with heparin was further confirmed by Fourier-transform infrared spectroscopy (FTIR). The surface and innerstructure morphologies of PHEMA cryogels were studied and characterized by the scanning electron microscope (SEM). Thesurface area of PHEMA cryogel was found to be 25.2 m2/g. Heparin immobilized PHEMA cryogels were used in lysozymeadsorption studies to assess the effects of pH, lysozyme concentration, flow rate, temperature and ionic strength. Themaximum lysozyme adsorption on the heparin immobilized PHEMA cryogel was found to be 48.73 mg/g from aqueoussolutions under optimized conditions. 1.0 M NaCI solution was used for desorption of lysozyme in a continuous system.The reusability of heparin immobilized PHEMA cryogels was tested for 10 adsorption-desorption cycles. The Langmuiradsorption model was plotted and found fitted for adsorption studies. The purity of lysozyme from egg white studies wasanalysed by sodium-dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using 12% separating gel.

___

  • 1. M. Andac, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B, 1021 (2016) 69-80.
  • 2. M. Uygun, D.A. Uygun, E. Özçalışkan, S. Akgöl, A. Denizli, Concanavalin A immobilized poly(ethylene glycol dimethacrylate) based affinity cryogel matrix and usability of invertase immobilization, J. Chromatogr. B, 73 (2012) 887- 888.
  • 3. S. Hajizadeh, C. Xu, H. Kirsebom, L. Ye, B. Mattiasson, Cryogelation of molecularly imprinted nanoparticles: A macroporous structure as affinity chromatography column for removal of β-blockers from complex samples. J. Chromatogr. A, 1274 (2013) 6-12.
  • 4. W. Noppe, H. Deckmyn, Development and screening of epoxy-spacer-phage cryogels for affinity chromatography: Enhancing the binding capacity, J. Sep. Sci., 40 (2017) 2575- 2583.
  • 5. V.I., Lozinsky, Polymeric Cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes, Russ. Chem. Bull., 57 (2008) 1015-1032.
  • 6. F.M. Plieva, H. Kirsebom, B. Mattiasson, Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications, J. Sep. Sci., 34 (2011) 2164-2172.
  • 7. H. Kirsebom, I.Y. Galaev, B. Mattiasson, Stimuli-responsive polymers in the 21st century: elaborated architecture to achieve high sensitivity, fast response, and robust behavior, J. Polym. Sci. Pol. Phys., 49 (2011) 173-178.
  • 8. N. Bereli, M. Andaç, G. Baydemir, R. Say, I.Y. Galaev, A. Denizli, Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels, J. Chrom. A, 1190 (2008) 18-26.
  • 9. M. Andaç, I.Y. Galaev, A. Denizli, Dye attached poly(hydroxyethyl methacrylate) cryogel for albumin depletion from human serum, J. Sep. Sci., 35 (2012) 1173- 1182.
  • 10. V.M. Gun’ko, I.N. Savina, S.V. Mikhalovsky, Cryogels: morphological structural and adsorption characterization, Adv. Colloid Interface Sci., 187 (2013) 1-46.
  • 11. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Antibody purification with protein A attached supermacroporous poly(hydroxyethyl methacrylate) cryogel, Biochem. Eng. J., 45 (2009) 201-208.
  • 12. D. Çimen, A. Denizli, Immobilized metal affinity monolithic cryogels for cytochrome C purification, Colloid. Surf. B Biointer., 93 (2012) 29-35.
  • 13. E. Tamahkar, N. Bereli, R. Say, A. Denizli, Molecularly imprinted supermacroporous cryogels for cytochrome C recognition, J. Sep. Sci., 34 (2011) 3433-3440.
  • 14. N. Bereli, M. Andaç, G. Baydemir, R. Say, I.Y. Galaev, A. Denizli, Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels, J.Chrom. A, 1190 (2008) 18-26.
  • 15. I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol., 21 (2003) 445-451.
  • 16. D. Falkenhagen, M. Brand, J. Hartmann, K.H. Kellner, T. Posnicek, V. Weber, Fluidized bed adsorbent systems for extracorporeal liver support, Ther Apher Dial., 10 (2006) 154-159.
  • 17. D.S. Hage, J.A. Anguizola, C. Bi, R. Li, R. Matsuda, E. Papastavros, E. Pfaunmiller, J. Vargas, X. Zheng, Pharmaceutical and biomedical applications of affinity chromatography: Recent trends and developments, J. Pharmaceutical and Biomed. Anal., 69 (2012) 93-105.
  • 18. M.G. Vladimir, N.S. Irina, V.M. Sergey, Cryogels: Morphological, structural and adsorption characterization, Advances in Colloid and Interface Science 187 (2013) 1-46.
  • 19. N. Wim, D. Hans, Development and screening of epoxyspacer-phage cryogels for affinity chromatography: Enhancing the binding capacity, J. Sep. Sci., 40 (2017) 2575- 2583.
  • 20. L.A.A. Veríssimo, F.S. Paganoto, P.C.G. Mol, R.D.C. Ilhéu Fontan, V.P.R. Minim, L.A. Minim, Preparation of an affinity cryogel column for lysozyme purification, Sep. Sci. Technol., (2017) 1-10.
  • 21. S. Hajizadeh, C. Xu, H. Kirsebom, L. Ye, B. Mattiasson, Cryogelation of molecularly imprinted nanoparticles: A macroporous structure as affinity chromatography column for removal of β-blockers from complex samples. J. Chromatogr. A, 1274 (2013) 6-12.
  • 22. T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, A.J. O’Connor, Cryogels for biomedical applications, J. Mater. Chem. B, 1 (2013) 2682- 2695.
  • 23. A. Kumar, Supermacroporous Cryogels: Biomedical and Biotechnological Applications, Taylor Francis, 480 (2016) 52.
  • 24. G. Erturk, B. Mattiasson, Cryogels-versatile tools in bioseparation, J. Chromatogr. A, 1357 (2014) 24-35.
  • 25. S. Allan, B.R. Hoffman, J. Frederick, J. Schoen, E. Lemons, Biomaterials science: an introduction to materials in medicine, Elsevier, 1519 (2013).
  • 26. B.W. Ounis, S.F. Gauthier, S.L. Turgeon, S. Roufik, Y. Pouliot, Separation of minor protein components from whey protein isolates by heparin affinity chromatography, Int Dairy J., 18 (2008) 1043-1050.
  • 27. L. Chen, C. Guo, Y. Guan, H. Liu, Isolation of lactoferrin from acid whey by magnetic affinity separation, Sep. Purif. Technol., 56 (2007) 168-174.
  • 28. A. Puerta, A. Jaulmes, M. Frutos, J.C. Diez-Masa, C. VidalMadjar, Adsorption kinetics of beta-lactoglobulin on a polyclonal immunochromatographic support, J. Chrom. A, 953 (2002) 17-30.
  • 29. C.G. Gomez, M.C. Strumia, Synthesis and modification of supports with an alkylamine and their use in albumin adsorption, J. Polym. Sci. Polym. Chem., 46 (2008) 2557- 2566.
  • 30. S. Ozkara, B. Garipcan, E. Piskin, A. Denizli, N-methacryloly- (L)-histidinemethylester carrying a pseudospecific affinity sorbent for immunoglobulin-G isolation from human plasma in a column system, J. Biomater. Sci. Polym. Ed., 14 (2003) 761.
  • 31. Spina R.L, Tripisciano C., T. Mecca T., Cunsolo F., Weber V., Mattiasson B., Chemically modified poly(2-hydroxyethyl methacrylate) cryogel for the adsorption of heparin, J. Biomed Mater., 102 (2014) 1207-1216.
  • 32. S. Murugesan, J. Xie, R.J. Linhardt, Immobilization of heparin: approaches and applications, Curr. Top. Medic. Chem., 8 (2008) 80-100.
  • 33. A. Denizli, Heparin immobilized poly(2‐hydroxyethyl methacrylate) based microspheres, J. Appl. Polym. Sci., 74 (1999) 655-662.
  • 34. A. Denizli, E. Pişkin, Heparin immobilized polyhydroxyethyl methacrylate microbeads for cholesterol removal: a preliminary report, J. Chrom. B, 670 (1995) 157-161.
  • 35. P.C.G. Mól, L.A.A. Veríssimo, M.R. Eller, V.P.R. Minim, L.A. Minim, Development of an affinity cryogel for one step purification of lysozyme from chicken egg white, J. Chromatogr. B, 1044 (2017) 17-23.
  • 36. D. Omana, J. Wang, J. Wu, Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites, J. Chromatogr. B. Anal. Technol. Biomed. Life Sci., 878 (2010) 1771-1778
  • 37. E.D.N.S. Abeyrathne, H.Y. Lee, D.U. Ahn, Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents, Poult. Sci., 92 (2013) 3292-3301.
  • 38. M.E. Avramescu, Z. Borneman, M. Wessling, Particleloaded hollow-fiber membrane adsorbers for lysozyme separation, J. Membrane Sci., 322 (2008) 306-313.
  • 39. H.T. Chiu, J.M. Lin, T.H. Cheng, S.Y. Chou, C.C. Huang, Direct purification of lysozyme from chicken egg white using weak acidic polyacrylonitrile nanofiber-based membranes, J. Appl. Polym. Sci., 156 (2012) 616-621.