Adsorption of lead on to poly(Acrylamide-maleic acid)-Based hydrogel composites

Bu çalışmada, poliakrilamid-maleik asit hidrojel (PAA-MA) ve kompozitlerine (PAA-MA-B ve PAA-MA-Z) kurşun adsorpsiyonu araştırıldı. Adsorpsiyon 25 oC’lik kesikli sistemde çalışıldı. Deneysel izotermlerin Langmuir, Freundlich ve Dubinin-Radushkevich modellerine uyumundan türetilen parametreler bu ilgiyi kanıtlamıştır. Adsorpsiyonun derişimle değişiminin incelenmesi sonucu elde edilen izotermlerin tümünün Giles sınıflandırmasındaki L veya H tipte olduğu görülmüştür. PAA-MA-B kompoziti PAA-MA-Z kompozitinden daha iyi adsorpsiyon kapasitesine sahip olduğu görülmüştür. Adsorpsiyon kapasitesi hidrojeldeki B ve Z bileşenlerinin artması ile artış göstermektedir.Adsorpsiyon entalpi ve entropi değişim değerleri, adsorpsiyonun, araştırması yapılan tüm adsorbanlar için pozitif değerlidir. Serbest entalpi (G) değerleri ise adsorpsiyon sürecinin beklenildiği gibi kendiliğinden yürüdüğünü göstermiştir (PAA-MA > PAA-MA-B > PAA-MA-Z). DR modelinden türetilen serbest enerji açısından da tüm adsorbanlar için kimyasal olduğunu kanıtlamıştır. The reusability tests for Pb2+ for five uses proved that the composites were reusable after complete recovery of the loaded. Kompozitlerin yeniden kullanılabilirlikleri ile ilgili sonuçlar tekrar kullanılabilir olduğunu göstermiştir.

Poli(Akrilamid-maleik asit) temelli hidrojel kompozitlere kurşun adsorpsiyonu

In this study, adsorptive features of the hydrogel (PAA-MA) and composites (PAA-MA-B and PAA-MA-Z) were investigated for lead (Pb2+). Adsorption of lead on hydrogel and composites is studied by batch adsorption tecnique at 25oC. In the experiments of the adsorption, the classical Lagmuir, Freundlich and Dubinin-Radushkevich (DR) models sorption models were fitted to the results. Isotherms were L and H type of Giles classification and evaluated with reference to Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. PAA-MA-B had higher adsorption capacity than PAA-MA-Z for lead ion. To increase the adsorption capacity of Pb2+ ion preparing the PAA-MA hydrogel. It has also been observed with increasing B and Z content Pb2+ ion adsorption. The values of enthalpy and entropy changed were positive for lead ion for PAA-MA, PAA-MA-B and PAA-MA-Z. The negative free enthalpy change value indicated that the adsorption process is spontaneous in the sequence of PAA-MA > PAA-MA-B > PAA-MA-Z. Free energy values derived from DR model implied that the sorption process is the ion exchange. The reusability tests for Pb2+ for five uses proved that the composites were reusable after complete recovery of the loaded.

___

  • 1. S.E. Abdel-Aal, Synthesis of copolymeric hydrogels using gamma radiation and their utilization in the removal of some dyes in wastwater, J. Appl. Polym. Sci., 102 (2006) 3720.
  • 2. U. Ulusoy, S. Simsek, Lead removal by polyacrylamidebentonite and zeolite composites: Effect of phytic acid immobilization, J. Hazard. Mater., 127 (2005) 163.
  • 3. T.E.V. Prasada, D.G. Reddi, D.H.L. Prasad, Vaporliquid equilibria for chlorobenzene with butan-1-ol, 2-methylpropan-1-ol and 2-methylpropan-2-ol at 94.6 kPa, Phys. Chem. Liquid., 38 (2000) 635.
  • 4. T.V. Budtova, I.E. Suleiman, S.Y. Frenkel, On the swelling of polyelectrolyte hydrogels in solutions of lınear-polymers, Vyskomol. Sodeny. Seria A & Seria B, 35 (1993) 93.
  • 5. H.N. Oztop, D. Saraydin, E. Karadag, Y. Caldıran, O. Güven, Influence of some aromatic amino acids on the swelling behavior of acrylamide/maleic acid hydrogel, 40 (1998) 575.
  • 6. R. Inam, Y. Gumus, T. Caykara, Competitive removal of Pb2+, Cd2+, and Zn2+ by poly(acrylamide-co-maleic acid) hydrogels/differential pulse polarographic determination, J. Appl. Polym. Sci., 94 (2004) 2401.
  • 7. H. Kaşgöz, New sorbent hydrogels for removal of acidic dyes and metal ions from aqueous solutions, Polym. Bull., 56 (2006) 517.
  • 8. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 3967 (2003) 1.
  • 9. Y.H. Wang, R.S. Juang, Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents, J. Hazard. Mater., 102 (2003) 291.
  • 10. P.F. Luckham, S. Rossi, The colloidal and rheological properties of bentonite suspensions, Adv. Colloid Interface Sci., 82 (1999) 43.
  • 11. A. Godelitsas, T. Armbruster, HEU-type zeolites modified by transition elements and lead, Micropor. Mesopor. Mater., 61 (2003) 3.
  • 12. X.J. Ju, S.B. Zhang, M.Y. Zhou, R. Xie, L. Yang, L.Y. Chu, Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions, J. Hazard. Mater., 167 (2009) 114.
  • 13. S.M. Maliyekkal, K.P. Lisha, T.A. Pradeep, Novel cellulose-manganese oxide hybrid material by in situ soft chemical synthesis and its application for the removal of Pb(II) from water, J. Hazard. Mater., 181 (2010) 986.
  • 14. R. Akkaya, U. Ulusoy, Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO2 2+ and Th4+, J. Hazard. Mater., 151 (2008) 380.
  • 15. U. Ulusoy, R. Akkaya, Adsorptive features of polyacrylamide–apatite composite for Pb2+, UO2 2+ and Th4+, J. Hazard. Mater., 163 (2009) 98.
  • 16. U.A. Atay, Ammonia removal from waste waters by the use of zeolite. MSc. Thesis, Cumhuriyet University, Sivas, Turkey. 2002.
  • 17. B. Demirel, O. Yenigun, T.T. Onay, Anaerobic treatment of dairy wastewaters: a review, Process Biochem., 40 (2005) 2583.
  • 18. B.S. Krishna, D.S.R. Murty, B.S. Jai Prakash, Thermodynamics of chromium(VI) anionic species sorption onto surfactant-modified montmorillonite clay, J. Colloid. Interface Sci., 229 (2000) 230.
  • 19. M. Doğan, M. Alkan, Removal of methyl violet from aqueous solution by perlite, J. Colloid Interface. Sci., 267 (2003) 32.
  • 20. J.C. Miller, J.N. Miller, Statistics for Analytical Chemistry, John Wiley & Sons, New York, 1989.
  • 21. P. Sharma, R. Tomar, Synthesis and application of an analogue of mesolite for the removal of uranium(VI), thorium(IV), and europium(III) from aqueous waste, Micropor. Mesopor. Mater. 116 (2008) 641.
  • 22. K.A. Krishnan, T.S. Anirudhan, Removal of cadmium(II) from aqueous solutions by steamactivated sulphurised carbon prepared from sugarcane bagasse pith: Kinetics and equilibrium studies, Water SA, 29 (2003) 147.
  • 23. D.L. Zhao, S.J. Feng, C.L. Chen, S.H. Chen, D. Xu, X.K. Wang, Adsorption of thorium(IV) on MX-80 bentonite: Effect of pH, ionic strength and temperature, Appl. Clay Sci., 41 (2008) 17.
  • 24. A.R. Cestari, V.F. Eunice, C.R.S. Mottos, Thermodynamics of the Cu (II) adsorption on thin vanillinmodified chitosan membranes, J. Chem. Thermodyn., 38 (2006) 1092.
  • 25. T.W. Weber, R.K. Chakraborti, Pore and solid diffusion models for fixed bed adsorbents. J. Am. Inst. Chem. Eng., 20 (1974) 228.