A New, Sensitive and Disposable Electrochemical Immunosensor Based on Benzaldehyde Side Group Containing Phosphazene Polymer Modified ITO Substrate for Interleukin 1β Detection

A New, Sensitive and Disposable Electrochemical Immunosensor Based on Benzaldehyde Side Group Containing Phosphazene Polymer Modified ITO Substrate for Interleukin 1β Detection

In this study, a novel electrochemical ultrasensitive immunosensor based on disposable benzaldehyde substituted phosp-hazene polymer (BSPP) modified ITO electrode was developed for interleukin 1β (IL 1β) detection. Aldehyde side groups containing phosphazene polymer (BSPP) synthesized via ring opening polymerization method. These aldehyde groups pro-vided anchoring points for anti-IL 1β antibodies. The production process of the proposed immunosensor was monitored by electrochemical techniques like Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV). In addition, these fabrication steps were characterized by utilizing Scanning Electron Microscopy (FE-SEM) and Atomic Force Micros-copy (AFM). Moreover, BSPP polymer layer on the polymer coated electrode surface was investigated by using Energy Dis-persive X-ray (EDX). The fabricated immunosensor had a low detection limit (9.3 fg/mL) and a wide linear detection range (0.03-7.5 pg/mL). Moreover, it had good reproducibility (1.82%), excellent repeatability (1.56%), good selectivity and high stability. The results of experiments showed that the BSPP polymer was desirable platform for IL 1β antigen detection in clinical diagnosis and practical applications. The applicability of the suggested biosensor was tested by measuring IL 1β level in human serum and the suggested immunosensor had acceptable results for quantitative analysis.

___

  • 1. S. Kumar, R.K. Singh, R. Murthy, T. Bhardwaj, Synthesis and evaluation of substituted poly (organophosphazenes) as a novel nanocarrier system for combined antimalarial therapy of primaquine and dihydroartemisinin, Pharm. Res., 32 (8) (2015) 2736-2752.
  • 2. H.R. Allcock, The synthesis of functional polyphosphazenes and their surfaces, Appl. Organomet. Chem., 12 (10-11) (1998) 659-666.
  • 3. J. Dudás, A. Fullár, M. Bitsche, V. Schartinger, I. Kovalszky. G.M. Sprinzl, H.J.E.c.r. Riechelmann, Tumor-produced. active Interleukin-1 β regulates gene expression in carcinoma-associated fibroblasts, Exp. Cell. Res., 317 (2011) 2222-2229.
  • 4. E.B. Aydın, M. Aydın, M.K. Sezgintürk, Highly sensitive electrochemical immunosensor based on polythiophene polymer with densely populated carboxyl groups as immobilization matrix for detection of interleukin 1β in human serum and saliva, Sens. Actuator. B, 270 (2018) 18-27.
  • 5. E.B. Aydın, M.K. Sezgintürk, A disposable and ultrasensitive ITO based biosensor modified by 6-phosphonohexanoic acid for electrochemical sensing of IL-1β in human serum and saliva, Anal. Chim. Acta, 1039 (2018) 41-50.
  • 6. C.E. Krause, B.A. Otieno, G.W. Bishop, G. Phadke, L. Choquette, R.V. Lalla, D.E. Peterson, J.F. Rusling, Ultrasensitive microfluidic array for serum pro-inflammatory cytokines and C-reactive protein to assess oral mucositis risk in cancer patients, Anal. Bioanal. Chem., 407 (2015) 7239-7243.
  • 7. C.-Y. Chiang, M.L. Hsieh, K.W. Huang, L.K. Chau, C.M. Chang, S.-R. Lyu, Fiber-optic particle plasmon resonance sensor for detection of interleukin-1β in synovial fluids, Biosens. Bioelectron., 26 (2010) 1036-1042.
  • 8. A. Baraket, M. Lee, N. Zine, M. Sigaud, J. Bausells, A. Errachid, A fully integrated electrochemical biosensor platform fabrication process for cytokines detection, Biosens. Bioelectron., 93 (2017) 170-175.
  • 9. J. Amani, M. Maleki, A. Khoshroo, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection, Anal. Biochem., 548 (2018) 53-59.
  • 10. M. Aydın, E.B. Aydın, M.K. Sezgintürk, A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum, Biosens. Bioelectron., 107 (2018) 1-9.
  • 11. P. Khashayar, G. Amoabediny, B. Larijani, M. Hosseini, J. Vanfleteren, Fabrication and Verification of Conjugated AuNP-Antibody Nanoprobe for Sensitivity Improvement in Electrochemical Biosensors, Sci. Rep., 7 (2017) 16070.
  • 12. N.S. Ferreira, M.G.F. Sales, Disposable immunosensor using a simple method for oriented antibody immobilization for label-free real-time detection of an oxidative stress biomarker implicated in cancer diseases, Biosens. Bioelectron., 53 (2014) 193-199.
  • 13. E.B. Aydın, M. Aydın, M.K. Sezgintürk, Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection, Biosens. Bioelectron., 121 (2018) 80-89.
  • 14. E.B. Aydın, M.K. Sezgintürk, Indium Tin Oxide (ITO): A promising material in biosensing technology TrAC. Trends Anal. Chem., 97 (2017) 309-315.
  • 15. M. Aydın, E.B. Aydın, M.K. Sezgintürk, A highly selective electrochemical immunosensor based on Conductive Carbon Black and Star PGMA polymer composite material for IL-8 biomarker detection in human serum and saliva, Biosens. Bioelectron., 117 (2018) 720-728.
  • 16. K. Ghayedi Karimi, S.A. Mozaffari, M. Ebrahimi, Spin-coated ZnO–graphene nanostructure thin film as a promising matrix for urease immobilization of impedimetric urea biosensor, J. Chin. Chem. Soc., 65 (2018) 1379-1388.
  • 17. M. Aydın, E.B. Aydın, M.K. Sezgintürk, Bioelectronics. Electrochemical immunosensor for CDH22 biomarker based on benzaldehyde substituted poly (phosphazene) modified disposable ITO electrode: A new fabrication strategy for biosensors, Biosens. Bioelectron., 126 (2019) 230-239.
  • 18. G.A. Carriedo, F.J. García Alonso, P.A. González, J.R. Menéndez, Infrared and Raman spectra of the phosphazene high polymer [NP (O2C12H8)]n, J. Raman Spect., 29 (1998) 327-330.
  • 19. C. Fiedler, B. Luerssen, B. Lucht, J. Janek, Synthesis and characterization of polyphosphazene electrolytes including cyclic ether side groups, J. Power Sourc., 384 (2018) 165-171.
  • 20. T.A. Luther, F.F. Stewart, J.L. Budzien, R.A. LaViolette, W.F. Bauer, M.K. Harrup, C.W. Allen, A. Elayan, On the mechanism of ion transport through polyphosphazene solid polymer electrolytes: NMR. IR. and Raman spectroscopic studies and computational analysis of 15N-labeled polyphosphazenes, J. Phy. Chem. B, 107 (2003) 3168-3176.
  • 21. L. Daasch, D. Smith, Infrared spectra of phosphorus compounds, Anal. Chem., 23 (1951) 853-868.
  • 22. H. Allcock, R. Kugel, K. Valan, Phosphonitrilic compounds. VI. High molecular weight poly (alkoxy-and aryloxyphosphazenes), Inorg. Chem., 5 (1966) 1709-1715.
  • 23. P. Jiang, X. Gu, S. Zhang, J. Sun, R. Xu, S. Bourbigot, S. Duquesne, M. Casetta, Flammability and thermal degradation of poly (lactic acid)/polycarbonate alloys containing a phosphazene derivative and trisilanollsobutyl POSS, Polymer, 79 (2015) 221-231.
  • 24. A. Banas, K. Banas, A. Furgal-Borzych, W. Kwiatek, B. Pawlicki, M. Breese, The pituitary gland under infrared light–in search of a representative spectrum for homogeneous regions, Analyst, 140 (2015) 2156-2163.
  • 25. M. Chen, R. Lord, Laser-excited Raman spectroscopy of biomolecules. VI. Polypeptides as conformational models, J. Am. Chem. Soc., 96 (1974) 4750-4752.
  • 26. K. Chrabaszcz, K. Kochan, A. Fedorowicz, A. Jasztal, E. Buczek, L.S. Leslie, R. Bhargava, K. Malek, S. Chlopicki, K.M. Marzec, FT-IR-and Raman-based biochemical profiling of the early stage of pulmonary metastasis of breast cancer in mice, Analyst, 143 (2018) 2042-2050.
  • 27. K. Dégardin, A. Desponds, Y. Roggo, Protein-based medicines analysis by Raman spectroscopy for the detection of counterfeits, Forensic Sci. Int., 278 (2017) 313-325.
  • 28. T. Kitagawa, S. Hirota, Raman spectroscopy of proteins Handbook of Vibrational Spectroscopy, New York: Wiley. 2006.
  • 29. A. Bonifacio, C. Beleites, F. Vittur, E. Marsich, S. Semeraro, S. Paoletti, V. Sergo, Chemical imaging of articular cartilage sections with Raman mapping. employing uni-and multi-variate methods for data analysis, Analyst, 135 (2010) 3193-3204.
  • 30. R.S. Jakubek, J. Handen, S.E. White, S.A. Asher, I.K. Lednev, Ultraviolet resonance Raman spectroscopic markers for protein structure and dynamics, TrAC. Trends Anal. Chem., 103 (2017) 223-229.
  • 31. J. Lippert, D. Tyminski, P. Desmeules, Determination of the secondary structure of proteins by laser Raman spectroscopy, J. Am. Chem. Soc., 98 (1976) 7075-7080.
  • 32. R.W. Williams, Protein secondary structure analysis using Raman amide I and amide III spectra, Methods in enzymology., Elsevier 1986. pp. 311-331.
  • 33. E.B. Aydın, M. Aydın, M.K. Sezgintürk, A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples, Biosens. Bioelectron., 97 (2017) 169-176.
  • 34. H. Sabouri, K. Ohno, S. Perrier, Well-defined colloidal crystal films from the 2D self-assembly of core–shell semi-soft nanoparticles, Poly. Chem., 6, (2015) 7297-7307.
  • 35. F. Mollarasouli, V. Serafín, S. Campuzano, P. Yáñez-Sedeño, J.M. Pingarrón, K. Asadpour-Zeynali, Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes, Anal. Chim. Acta, 1011 (2018) 28-34.
  • 36. H.B. Wang. H.D. Zhang. S.P. Xu. T. Gan. K.J. Huang. Y.M. Liu, A sensitive and label-free electrochemical impedance biosensor for protein detection based on terminal protection of small molecule-linked DNA, Sens. Actuator. B, 194 (2014) 478-483.
  • 37. Y. Chen, B. Jiang, Y. Xiang, Y. Chai, R. Yuan, Target recycling amplification for sensitive and label-free impedimetric genosensing based on hairpin DNA and graphene/Au nanocomposites, Chem. Commun., 47 (2011) 12798-12800.
  • 38. G.I. Kim, K.W. Kim, M.K. Oh, Y.M. Sung, Electrochemical detection of vascular endothelial growth factors (VEGFs) using VEGF antibody fragments modified Au NPs/ITO electrode, Biosens Bioelectron., 25 (2010) 1717-1722.
  • 39. J.Y. Wu, C.L. Tseng, Y.K. Wang, Y. Yu, K.L. Ou, C.C. Wu, Detecting interleukin-1β genes using a N2O plasma modified silicon nanowire biosensor, J. Exp. Clin. Med., 5 (2013) 12-16.