Biosynthesis of Gold Nanoparticles using Scytosiphon lomentaria (Brown algae) and Spyridia filamentosa (Red algae) from Kyrenia Region and Evaluation of their Antimicrobial and Antioxidant Activity

This study was carried out for biosynthesis of gold nanoparticles using Scytosiphon lomentaria (brown algae) and Spyridia filamentosa (red algae) and compared. Synthesized gold nanoparticles were characterized using the UV-Vis spectroscopy (UV-Vis), Fourier transform infrared (FTIR) and Master Sizer analysis. Antioxidant and antimicrobial activity of the synthesized nanoparticles were tested against E. coli and S. typhi. Macro algae involvement in the stabilization of the gold nanoparticles was confirmed by the presence of UV-Vis peak at 540 nm and is an indication of the presence of the gold nanoparticles (AuNPs). Stretching in peaks of the FTIR showed that the biomolecules present in the seaweed extract reduced the gold ions. Master sizer results for AuNPs were within the range of 15-55 nm. Antioxidant activity carried out using DPPH free radical scavenging activity revealed significant activity for both AuNPs. Biosynthesized AuNPs also showed antimicrobial activity against Salmonella typhii and Escherichia coli. The S. lomentaria gold nanoparticles exhibited great inhibition against Escherichia coli, whereas S. filamentosa gold nanoparticles showed great antibacterial activity against S .typhi. Synthesized AuNPs using S. lomentaria and S. filamentosa   as stabilizing agents showed convincing antioxidant and antimicrobial activity against gram negative and gram positive bacteria.

___

  • 1. S.M. Moghimi, A.C. Hunter, J.C. Murray. Nanomedicine: current status and future prospects. FASEB J. 2005; 19: 311-330.
  • 2. P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and applications in imaging, sensing, biology, and medicine, Acc. Chem. Res. 41 (2008) 1578–1586.
  • 3. P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J. Nanoparticle Res. 10 (2008) 507–517.
  • 4. N. Kulkarni, U. Muddapur, Biosynthesis of metal nanoparticles: a review, J. Nanotechnol. 2014 (2014).
  • 5. V.G. Kumar, S.D. Gokavarapu, A. Rajeswari, T.S. Dhas, V. Karthick, Z. Kapadia, T. Shrestha, I.A. Barathy, A. Roy, S. Sinha, Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata, Colloids Surf. B 87 (2011) 159–163.
  • 6. D. Kavaz, S. Lamido, H. Umar, 2015. Antimicrobial Activity Of Silver Nanoparticles Synthesized Via Green Chemistry”, The Russian Academic Journal, Vol 34, No:4 p. 36-44.
  • 7. H. Y. El-Kassas, M. M. El-Sheekh.Induction of the synthesis of bioactive compounds of the marine alga Tetraselmis tetrathele (West) Butcher grown under salinity stress, Egyptian Journal of Aquatic Research (2016) 42, 385–391.
  • 8. S. Naraginti, Y. Li, Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa, J. Photochem. Photobiol. B Biol. 170 (2017) 225–234.
  • 9. M. A. Hassaan, S. Hosny, Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae – Review, International Journal of Atmospheric and Oceanic Sciences 2018; 2(1): 10-22).
  • 10. M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy, G.E.J. Poinern, Green synthesis of metallic nanoparticles via biological entities, Materials 8 (2015) 7278–7308.
  • 11. A.M. Alkilany, C.J. Murph, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?, J Nanopart Res. 2010 Sep;12(7):2313-2333.
  • 12. M. Rajan, K. Meena, D. Philip, Shape tailored green synthesis and catalytic properties of gold nanocrystals, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 118 (2014) 793–799.
  • 13. Li Y, Schluesener HJ, Xu S. Gold nanoparticle-based biosensors. Gold Bulletin. 2010; 43: 29-41.
  • 14. Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012; 112: 2739-27796.
  • 15. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012; 41: 2256-2282.
  • 16. Sandström P, Boncheva M, Åkerman B. Nonspecific and thiol-specific binding of DNA to gold nanoparticles. Langmuir. 2003; 19: 7537-7543.
  • 17. M. Znati, H. B. Jannet, S. Cazaux, J. Bouajila, Chemical Composition, Biological and Cytotoxic Activities of Plant Extracts and Compounds Isolated from Ferula lutea. Molecules 2014, 19(3), 2733-2747.
  • 18. Vijayaraghavan, K., Mahadevan, A., Sathishkumar, M., Pavagadhi, S., Balasubramanian, R.: Biosynthesis of Au (0) from Au(III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chem. Eng. J. 2011; 167, 223–227.
  • 19. Ramakrishna, M., Rajesh B. D., Robert G., Chandra S., Rao G., Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry 2016; 6: 1-13.
  • 20. D. MubarakAli, N. Thajuddin,, K. Jeganathan,, M. Gunasekaran., Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B. 2011; 85, 360–365.
  • 21. D. Inbakandan, R. Venkatesan, S.A. Khan, Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). Colloids Surf. B. 2010; 81, 634–639.
  • 22. SA. Aromal, D. Philip, Benincasa hispida seed mediated green synthesis of gold nanoparticles and its optical nonlinearity. Physica E 2012; 44:1329–34.
  • 23. S. Rajeshkumar , S, Venkat, H. Agarwal, A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies 2017:3(4):406-413.
  • 24. R. Geetha, T Ashokkumar, S. Tamilselvan, K. Govindaraju, M. Sadiq, and G. Singaravelu, Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 2013; 4(4-5): 91–98.
  • 25. N. Kuyucak, B. Volesky, Accumulation of gold by algal biosorbent. Biorecovery, 1989: 1, 189–204.
  • 26. P. Karuppaiya, E. Satheeshkumar, WT. Chao, LY. Kao, ECF. Chen, HS. Tsay, Antimetastatic activity of biologically synthesized gold nanoparticles on human fibrosarcoma cell line HT-1080. Colloids Surf 2013; 110:163–70.
  • 27. CH. Ramamurthy, M. Padma, IDM. Samadanam, R. Mareeswaran R, A. Suyavaran, M. Sureshkumar, et al. The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf 2013;102:808–15.
  • 28. D. Philip, Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta Part A 2009; 73:650–3.
  • 29. H. Umar, D. Kavaz, N. Rizaner, Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine. 2019; 14: 87–100.
  • 30. G. Balasubramani, R. Ramkumar, N. Krishnaveni, A. Pazhanimuthu, T. Natarajan, R.Sowmiya, P. PerumalStructural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract (decoction) of Antigonon leptopus Hook. & Arn J. Trace Elem. Med. Biol., 30 (2015), pp. 83-89.
  • 31. M.K. Swamy, M.S. Akhtar, S.K. Mohanty, U.R. SinniahSynthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalariaand assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities Spectrochim. Acta A, 151 (2015), pp. 939-944.
  • 32. T.J.I. Edison, M.G. Sethuraman, 2012. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47, 1351-1357.
  • 33. S. Shamaila, N. Zafar, S. Riaz, R. Sharif, J. Nazir, S. Naseem, 2016. Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 6 (4), 71.
  • 34. S. Prabukumar, C. Rajkuberan, G. Sathishkumar, M. Illaiyaraja, S. Sivaramakrishnan, Biogenic gold nanoparticles synthesized using Crescentia sujete L. and evaluation of their different biological activities. Biocatalysis and Agricultural Biotechnology. 11 (2017) 75-82.
  • 35. M. Umadevi, T. Rani, T. Balkrishnan, R. Ramanibai, 2011. Antimicrobial activity of silver nanoparticles under an ultrasonic field. Int. J. Pharm. Sci. Nanotechnol. 4, 1491-1496.
  • 36. S.R. Vijayan, P. Santhiyagu, M.S. Singamuthu, N. Kumari, R. Anila, R. Jayaraman, K. Ethiraj, 2014. Synthesis and characterization of silver and gold nanoparticles using aqueous seaweed; Turbinaria conoides and their antimicrobial activity, The Scientific World Journal. Volume 2014, Article ID 938272, 10 pages, http://dx.doi.org/10.1155/2014/938272.
  • 37. F.A.A. Rajathi, C. Parthiban, G.V. Kumar, P. Anantharaman, 2012. Biosynthesis of antibacterial gold nanoparticles using brown alga Stoechospermum marginatum (kutzing, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, pp 166-173.
  • 38. N. Abdel-Raouf, N.M. Al-Enazi, I.B.M. Ibraheem, 2017. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity, Arabian Journal of Chemistry, 10, S3029-S3039.
  • 39. K. Kayalvizhi, N. Asmathunisha, V. Subramanian, K. Kathiresan, 2014. Purification of silver and gold nanoparticles from two species of brown seaweeds (Padina tetrastromatica and Turbinaria ornata), Journal of Medical Plants Studies, 2(4), pp 32-37.
  • 40. T.S. Dhas, V.G.Kumar, T. Malyalagan, K. Govindaraju, 2015. Biofabrication of Gold Nanoparticles Using Sargassum polycystum and Their Antibacterial Activity, Advanced Chemistry Letters, 2, 31-35.