Electrochemical Performance of Fabricated Supercapacitors Using MnO2/Activated Carbon Electrodes

Peanut shells were subjected to pyrolysis and chemical activation to produce activated carbon with high specific surface area. MnO2 particles were synthesized on the activated carbon surface. Supercapacitors were fabricated by using activated carbon electrodes and tested by constant current charge-discharge, self-discharge, and life-cycle tests. MnO2 loading led to a significant decrease in specific surface area. The pore volume distribution calculations revealed that the MnO2 particles were in nanometer size. Because of the reduction of MnO4- Ions to MnO2 over the activated carbon surface, the amount of oxygen-containing surface functional groups, changed. Although the MnO2 loading caused a decrease in surface area, the specific capacitance increased from 49 F/g to 68 F/g.

___

  • 1. E. Bayram, Electrosoption of aromatic organic acids from aqueous solutions onto granular activated carbon electrodes for water purification, Hacettepe J. Biol. Chem., 3 (2016) 273-273.
  • 2. C. Haktanır, Removal of heavy metals from aqueus solution using activated carbon embedded cryogels, Hacettepe J. Biol. Chem., 1 (2017) 135-142.
  • 3. S. Baş, Ö. Hakli, A.G. Dumanli, Y. Yürüm, PAN-based pd-doped activated carbon fibers for hydrogen storage : preparation , a new method for chemical activation and characterization of fibers, Hacettepe J. Biol. Chem. 36 (2008) 247-253.
  • 4. H. Jüntgen, Activated carbon as catalyst support, Fuel, 65 (1986) 1436–1446.
  • 5. R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn, Carbon aerogels for electrochemical applications, J. Non. Cryst. Solids., 225 (1998) 74-80.
  • 6. E. Frackowiak, Carbon materials for supercapacitor application., Phys. Chem. Chem. Phys., 9 (2007) 1774-785.
  • 7. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, J. Mater. Chem. 38 (2009) 2520- 2531.
  • 8. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. Chem. Soc. Rev., 41 (2012) 797-828.
  • 9. S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem., 22 (2012) 767.
  • 10. P.T. Williams, A.R. Reed, Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste, Biomass and Bioenergy., 30 (2006) 144–152.
  • 11. M.J. Prauchner, F. Rodríguez-Reinoso, Chemical versus physical activation of coconut shell: A comparative study, Microporous Mesoporous Mater., 152 (2012) 163-171.
  • 12. M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, a Review of metal oxide composite electrode materials for electrochemical capacitors, J. World Sci., 9 (2014) 1-25.
  • 13. D. Deng, B.-S. Kim, M. Gopiraman, I.S. Kim, Needle-like MnO2/ activated carbon nanocomposites derived from human hair as versatile electrode materials for supercapacitors, RSC Adv., 5 (2015) 81492-81498.
  • 14. T. Yumak, D. Bragg, E.M. Sabolsky, Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications, Appl. Surf. Sci. 469 (2019) 983-993.
  • 15. M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors, Energy Environ. Sci., 3 (2010) 1294-1301.
  • 16. V. Khomenko, E. Frackowiak, F. Beguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations, Electrochim. Acta., 50 (2005) 2499-2506.
  • 17. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069. 18. H. Peng, G. Ma, K. Sun, J. Mu, Z. Zhang, Z. Lei, Formation of
  • carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application, ACS Appl. Mater. Interfac., 6 (2014) 20795-20803.
  • 19. K.C. Kemp, S. Bin Baek, W.G. Lee, M. Meyyappan, K.S. Kim, Activated carbon derived from waste coffee grounds for stable methane storage, Nanotechnology, 26 (2015).
  • 20. J. Ma, Z. Zhu, B. Chen, M. Yang, H. Zhou, C. Li, F. Yu, J. Chen, One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal, J. Mater. Chem. A, 1 (2013) 4662-4666.
  • 21. W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, X. Li, 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor, Sci. Rep., 7 (2017) 1-11.
  • 22. Z. Wu, X.L. Huang, Z.L. Wang, J.J. Xu, H.G. Wang, X.B. Zhang, Electrostatic induced stretch growth of homogeneous β-Ni(OH)2on graphene with enhanced high-rate cycling for supercapacitors, Sci. Rep., 4 (2014) 1-8.
  • 23. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies, J. Phys. Chem. C, 115 (2011) 17009-17019.
  • 24. S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon N. Y., 35 (1997) 1799-1810.
  • 25. X. Chang, X. Zhai, S. Sun, D. Gu, L. Dong, Y. Yin, Y. Zhu, MnO2/g-C3N4 nanocomposite with highly enhanced supercapacitor performance, Nanotechnology, 28 (2017) 135705-135714.
  • 26. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi, MnO2- embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors, J. Phys. Chem. B, 110 (2006) 6015-6019.
  • 27. C. Zequine, C.K. Ranaweera, Z. Wang, P.R. Dvornic, P.K. Kahol, S. Singh, P. Tripathi, O.N. Srivastava, S. Singh, B.K. Gupta, G. Gupta, R.K. Gupta, High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach, Sci. Rep., 7 (2017) 1-12.