Hydrothermal Synthesis of MIL-53 Catalyst for Liquid Phase Oxidation of Phenol Fenolün Sıvı Faz Oksidasyonu için Mil-53 Katalizörünün Hidrotermal Sentezi

For the removal of toxic organic phenol pollutants, to find a new alternative oxidation catalyst has been an important topic for a long time. Iron terephthalate (MIL-53) is an efficient catalyst for oxidation processes with high porosity and high surface area. In this study, MIL-53 was used for the oxidation of phenol. The catalyst was synthesized by hydrothermal method at 150°C for 2 h. It was structurally characterized by FT-IR and p-XRD. Thermal properties were also examined. The surface area was found as 152 m2 /g with micropore areas. The liquid phase oxidation of phenol by hydrogen peroxide was performed on MIL-53. The reaction time, reaction temperature, catalyst amount and oxidant amount were also investigated. The phenol was removed with 91% conversion for 3 hours at 80°C. MIL-53 was enhanced as an alternative catalyst for liquid phase oxidation of phenol with high efficiency, selectivity, and conversion.

___

  • 1. B. Hameed, A. Rahman, Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material, J. Hazard. Mater., 160 (2008) 576- 581.
  • 2. B. Van der Bruggen, C. Vandecasteele, Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry, Environ. Pollut., 122 (2003) 435-445.
  • 3. W. Kujawski, A. Warszawski, W. Ratajczak, T. Porebski, W. Capała, I. Ostrowska, Removal of phenol from wastewater by different separation techniques, Desalination, 163 (2004) 287-296.
  • 4. M. Pimentel, N. Oturan, M. Dezotti, M.A. Oturan, Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode, Appl. Catal. B, 83 (2008) 140-149.
  • 5. N.K. Swamy, P. Singh, I.P. Sarethy, Precipitation of phenols from paper industry wastewater using ferric chloride, Rasayan J. Chem., 4 (2011) 452-456.
  • 6. A. Benhadji, M.T. Ahmed, R. Maachi, Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba, Desalination, 277 (2011) 128-134.
  • 7. S. Rasalingam, R. Peng, R.T. Koodali, Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials, J. Nanomater., 2014 (2014) 10.
  • 8. I. Oller, S. Malato, J. Sánchez-Pérez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review, Sci. Total Environ., 409 (2011) 4141-4166.
  • 9. A.D. Bokare, W. Choi, Review of iron-free Fenton-like systems for activating H2 O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121-135.
  • 10. C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack, J. Catal., 122 (1990) 178-192.
  • 11. H.S. Wahab, A.A. Hussain, Photocatalytic oxidation of phenol red onto nanocrystalline TiO2 particles, J. Nanostructure Chem., 6 (2016) 261-274.
  • 12. W. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna, G. Mailhot, Assessment of the Fe (III)–EDDS complex in Fentonlike processes: from the radical formation to the degradation of bisphenol A, Environ. Sci. Technol., 47 (2013) 1952-1959.
  • 13. N. Gao, Y. Deng, D. Zhao, Ametryn degradation in the ultraviolet (UV) irradiation/hydrogen peroxide (H2 O2 ) treatment, J. Hazard. Mater., 164 (2009) 640-645.
  • 14. L. Xu, J. Wang, Fenton-like degradation of 2, 4-dichlorophenol using Fe3O4 magnetic nanoparticles, Appl. Catal. B, 123 (2012) 117-126.
  • 15. N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst, Chem. Eng. J., 112 (2005) 191-196.
  • 16. M. Kasiri, H. Aleboyeh, A. Aleboyeh, Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photoFenton catalyst, Appl. Catal., B, 84 (2008) 9-15.
  • 17. A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation, Chem. Commun., 53 (2017) 10851-10869.
  • 18. B.N. Bhadra, I. Ahmed, S.H. Jhung, Remarkable adsorbent for phenol removal from fuel: functionalized metal–organic framework, Fuel, 174 (2016) 43-48.
  • 19. A.M. Ghaedi, M. Panahimehr, A.R.S. Nejad, S.J. Hosseini, A. Vafaei, M.M. Baneshi, Factorial experimental design for the optimization of highly selective adsorption removal of lead and copper ions using metal organic framework MOF-2 (Cd), J. Mol. Liq., 272 (2018) 15-26.
  • 20. E. Rahimi, N. Mohaghegh, New hybrid nanocomposite of copper terephthalate MOF-graphene oxide: synthesis, characterization and application as adsorbents for toxic metal ion removal from Sungun acid mine drainage, Environ. Sci. Pollut. Res. Int., 24 (2017) 22353-22360.
  • 21. I.Y. Skobelev, A.B. Sorokin, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Solvent-free allylic oxidation of alkenes with O2 mediated by Fe-and Cr-MIL-101, J. Catal., 298 (2013) 61-69.
  • 22. Y. Horiuchi, T. Toyao, K. Miyahara, L. Zakary, D. Do Van, Y. Kamata, T.-H. Kim, S.W. Lee, M. Matsuoka, Visible-lightdriven photocatalytic water oxidation catalysed by ironbased metal–organic frameworks, Chem. Commun., 52 (2016) 5190-5193.
  • 23. L. Ai, C. Zhang, L. Li, J. Jiang, Iron terephthalate metal– organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation, Appl. Catal., B, 148 (2014) 191-200.
  • 24. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater., 9 (2010) 172.
  • 25. M. Pilloni, F. Padella, G. Ennas, S. Lai, M. Bellusci, E. Rombi, F. Sini, M. Pentimalli, C. Delitala, A. Scano, Liquid-assisted mechanochemical synthesis of an iron carboxylate Metal Organic Framework and its evaluation in diesel fuel desulfurization, Microporous Mesoporous Mater., 213 (2015) 14-21.
  • 26. F. Millange, N. Guillou, R.I. Walton, J.-M. Grenèche, I. Margiolaki, G. Férey, Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks, Chem. Commun., (2008) 4732-4734.
  • 27. M. Alhamami, H. Doan, C.-H. Cheng, A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption, Materials, 7 (2014) 3198-3250.
  • 28. B. Saifutdinov, V. Isaeva, E. Alexandrov, L. Kustov, Study of selective adsorption of aromatic compounds from solutions by the flexible MIL-53 (Al) metal-organic framework, Russ. Chem. Bull., 64 (2015) 1039-1048.
  • 29. E.V. Rokhina, J. Virkutyte, Environmental application of catalytic processes: heterogeneous liquid phase oxidation of phenol with hydrogen peroxide, Crit. Rev. Environ. Sci. Technol., 41 (2010) 125-167.
  • 30. Q. Sun, M. Liu, K. Li, Y. Han, Y. Zuo, J. Wang, C. Song, G. Zhang, X. Guo, Controlled synthesis of mixed-valent Fe-containing metal organic frameworks for the degradation of phenol under mild conditions, Dalton Trans., 45 (2016) 7952-7959.