Soğuk iklim bölgelerinde LEED sertifikalı eğitim binasının pandemi bağlamında değerlendirilmesi

Günümüzde insanlar hayatlarının büyük bir kısmını kapalı ortamlarda geçirmektedir. Bunun için kullanıcılarının sağlığını da doğrudan etkilemesi bakımından, binaların pandemiye karşı dayanımlı olması gerekir. Aynı zamanda binalarda bulaşma ve bulaşma hızının azaltılması yönünde gerekli önlemlerin de alınması da şarttır. Yine eğitim binaları da hastalıkların bulaşma olasılıklarının ve yayılma hızlarının yüksek olduğu binalardır. Bu nedenle bütüncül bakış açsıyla eğitim binalarında SARS-CoV-2 virüsünün içeri girme olasılığının ve yayılım ile öğrencilere bulaş riskinin azaltılması için yeterli tedbirlerin alınması gerekir. Bu çalışmada; Erzurum Teknik Üniversitesi kampüsündeki uluslararası LEED (Leadership in Energy and Environmental Design) yeşil bina sertifikasına sahip Mühendislik ve Mimarlık Fakültesi binasının SARS-CoV-2 virüs risk yönetimi ve iç ortam hava kalitesi parametrelerinin değerlendirilmesi yapılmıştır. COVID-19 (SARS-CoV-2) virüsünün bulaşma ve bulaşma hızının azaltılması yönünde HVAC (Isıtma, havalandırma ve iklimlendirme) ile ilgili faktörlere bağlı olarak alınması gereken önlemlerin önemi vurgulanmıştır. Çalışmada amfi dersliklerde yapılan ölçümlerde; CO2 konsantrasyonları ortalama 645.68 ile 897.25 ppm aralığında, iç ortam sıcaklıkları 18 ile 24 °C aralığında, hava hızları 0.161 m/s ile 0.194 m/s aralığında ve bağıl nemin de %45.35rH ile %58,96 rH aralığında olduğu tespit edilmiştir. Bu değerlerin uluslararası standartlara uygun olduğu belirlenmiştir. Analiz sonuçları; COVID-19 sürecinde yeşil binalarda eğitim ve öğretim faaliyetlerinin daha güvenli yürütülebileceğini göstermektedir. Yine LEED sertifika kriterlerinin pandemilere karşı güvence olduğu da belirlenmiştir. Sonuçlar; eğitim binalarında gelecekte oluşabilecek pandemiye karşı iç hava kalitesi bakımından güvenlik önlemlerinin belirlenmesine de rehber olabilir.

Evaluation of LEED certified education building in cold climate regions in the context of pandemic

Today, people spend most of their lives indoors. For this, the buildings must be resistant to pandemics in terms of directly affecting the health of their users. However, it is essential to take the necessary measures to reduce the rate of contamination and contamination in buildings. Likewise, educational buildings are buildings where the transmission probability and spread rate of diseases are high. Therefore, from a holistic point of view, adequate measures should be taken to reduce the possibility of the entry of the SARS-CoV-2 virus in educational buildings and the risk of its spread and transmission to students. In this study; The SARS-CoV-2 virus risk management and indoor air quality parameters of the Faculty of Engineering and Architecture building, which has the international LEED (Leadership in Energy and Environmental Design) green building certificate, on the campus of Erzurum Technical University were evaluated. The importance of the measures to be taken depending on the factors related to HVAC (Heating, ventilation and air conditioning) in order to reduce the transmission and transmission rate of the COVID-19 (SARS-CoV-2) virus was emphasized. In the measurements made in lecture halls; It was determined that CO2 concentrations were between 645.68 and 897.25 ppm on average, indoor temperatures were between 18 and 24 °C, air velocities were between 0.161 m/s and 0.194 m/s, and relative humidity was between 45.35%rH and 58.96% rH.It has been determined that these values are in accordance with international standards. The results of the analysis show that education and training activities can be carried out more safely in green buildings during the COVID-19 process. It has also been determined that LEED certification criteria are assurances against pandemics.Results; It can also guide the determination of security measures in terms of indoor air quality against future pandemics in educational buildings.

___

  • Allen, J. G., MacNaughton, P., Laurent, J. G. C., Flanigan, S. S., & Eitlend, E. S. (2015). Green buildings and health. Current Enviromental Health Reports, 2, 250 –258. https://doi.org/10.1007/s40572-015-0063-yhrae
  • ASHRAE Standard 52.2. (2007). Method of testing general ventilation air-cleaning devices for removal efficiency by particle size. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., Atlanta
  • ASHRAE Standard 62. (1989). Ventilation for acceptable indoor air quality. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., Atlanta
  • ASHRAE Standard 62.1. (2010). Ventilation for acceptbale indoor air quality. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., Atlanta
  • Bakırcı, K., Özyurt, Ö., Yılmaz, M., & Erdoğan, S. (2006). Erzurum ili enerji çalışmaları için iklim ve meteoroloji verileri. Tesisat Mühendisliği Dergisi, 95, 19-26
  • Bas, E. (2004). Indoor air quality- a guide for facility managers (2nd ed). The Fairmont Press.https://www.academia.edu/34932675/Indoor_air_quality_a_guide_for_facility_managers
  • Beggs, C.B. (2020). Is there an airborne component to the transmission of COVID-19?: a quantitative analysis study. MedRXiv,1.https://doi.org/10.1101/2020.05.22.20109991 Bennett, D. H., McKone, T. E., Evans, J. S., Nazaroff, W. W., Margni, M. D., Jolliet, O., & Smith, K. R. (2002). Defining intake fraction. Environmental Science and Technology, 36(9), 207A–211A. https://doi.org/10.1021/es0222770
  • Chowdhury, M. A., Shuvho, M. B. A., Shahid, M. B. A., Haque, M. A., Kashem, M. A., Lam, S. S., Ong, H. C., Uddin, M. A., & Mofijur, M. (2021). Prospect of biobased antiviral face mask to limit the coronavirus outbreak. Environmental Research, 192, 110294. https://doi.org/10.1016/j.envres.2020.110294
  • Cleanroom. (2020). Yaşam bilimleri ve temiz oda teknolojileri gazetesi, 22. https://cleanroomnews.org/sayi-22
  • Coleman, K. K., Nguyen, T. T., Yadana, S., Hansen-Estruch, C., Lindsley, W. G., & Gray, G. C. (2018). Bioaerosol sampling for respiratory viruses in singapore’s mass rapid transit network. Scientific Reports, 8, 17476. https://doi.org/ 10.1038/s41598-018-35896-1.
  • Di Gilio, A., Palmisani, J., Pulimeno, M., Cerino, F., Cacace, M., Miani, A., & de Gennaro, G. (2022). CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission. Environmental Research, 202, 111560. https://doi.org/10.1016/j.envres.2021.111560.
  • Doremalen, N. V., Busahmaker, T., & Munsater, V.J. (2013). Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. European communicable dise¬ase bulletin, 18(38). 1-4. https://doi.org/10.2807/1560-7917.es2013.18.38.20590
  • Doremalen, N. V., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England Journal of Medicine, 382(16).1564-1567. https://www.nejm.org/doi/10.1056/NEJMc2004973
  • Gan, V. J. L., Deng, M., Tan, Y., Chen, W., & Cheng, J.C.P. (2019). BIM-Based framework to analyze the effect of natural ventilation on thermal comfort and energy performance in buildings. Energy Procedia, 158, 3319–3324. https://doi.org/10.1016/j.egypro.2019.01.971
  • Guo, Y. R., Cao, Q. D., Hong, Z.-S., Tan, Y.-Y., Chen, S. D., Jin, H. J., Tan, K. S., Wang, D. Y., & Yan, Y. (2020). The Origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) Outbreak-An Update on the Status. Military Medical Research, 7, 11. https://doi.org/10.1186/s40779-020-00240-0
  • Hedge, A., Miller, L., & Dorsey, J. (2014). Occupant comfort and health in green and conventional university buildings.Work, 49(3), 363–72. https://doi.org/10.3233/WOR-141870
  • Liu, L., Li, Y., Nielsen, P. V., Wei, J., & Jensen, R. L. (2017). Short‐range airborne transmission of expiratory droplets between two people. Indoor Air,27(2), 452-462. https://doi.org/10.1111/ina.12314 Marotta, A., Porras-Amores, C., & Rodríguez Sánchez, A. (2021). Resilient built environment: critical review of the strategies released by the sustainability rating systems in response to the COVID-19 pandemic. Sustainability, 13(20), 11164. https://doi.org/10.3390/su132011164
  • Monto, A. S. (1974). Medical reviews. Coronaviruses. The Yale Journal of Biology and Medi¬cine, 47(4), 234–251.
  • Morawska, L., Tang, J. W., Bahnfleth, W., Bluyssen, P. M., Boerstra, A., Buonanno, G., Cao, J., Dancer, S., Floto, A., Franchimon, F., Haworth, C., Hogeling, J., Isaxon, C., Jimenez, J. L., Kurnitski, J., Li, Y., Loomans, M., Marks, G., Marr, L. C., Mazzarella, L., Melikov, A. K., Miller, S., Milton, D. K., Nazaroff, W., Nielsen, P. V., Noakes, C., Peccia, J., Querol, X., Sekhar, C., Sepp ̈anen, O., Tanabe, S.-I., Tellier, R., Tham, K. W., Wargocki, P., Wierzbicka, A., & Yao, M. (2020). How can airborne transmission of COVID-19 indoors be minimised? Environment International, 142, 105832. https://doi.org/10.1016/j.envint.2020.105832.
  • Nie, J., Li, Q., Wu, J., Zhao, C., Hao, H., Liu, H., Zhang, L., Nie, L., Qin, H., Wang, M., Lu, Q., Li, X., Sun, Q., Liu, J., Fan, C., Huang, W., Xu, M., & Wang, Y. (2020). Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerging Microbes & Infections, 9, 680–686. https://doi.org/10.1080/22221751.2020.1743767
  • Nishiura, H., Oshitani, H., Kobayashi, T., Saito, T., Sunagawa, T., Matsui, T., Wakita, T., T, M. C. R., & Suzuki, M. (2020). Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). MedRxiv, 3. https://doi.org/10.1101/2020.02.28.20029272
  • Peng, X., Xu, X., Li, Y., Cheng, L., Zhou, X., & Ren, B. (2020). Transmission routes of 2019-NCoV and controls in dental practice. International Journal of Oral Science, 12, 1–6. https://doi.org/10.1038/s41368-020-0075-9
  • Peng, Z., & Jimenez, L. J. (2021). Exhaled CO2 as a COVID-19 ınfection risk proxy for different ındoor environments and activities.Environmental Science & Technology Letters, 8(5), 392-397. https://doi.org/10.1021/acs.estlett.1c00183
  • Rehva. (2020). COVID-19 kılavuz belgesi. Federation of European Heating, Ventilation and Air Conditioning Associations. https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4_23112020.pdf
  • Sporr, A., Zucker, G., & Hofmann, R. (2019). Automated HVAC control creation based on building ınformation modeling (bım): Ventilation system. (IEEE), 7, 74747–74758. https://doi.org/10.1109/ACCESS.2019.2919262
  • Türk Toraks Derneği. (2020). COVID-19 dünyasında kapalı alanlar toplantısı. https://www.toraks.org.tr/site/sf/documents/pre_migration/e7862032a9e89031acf8d9d817752532dcf6d7e27115c6225ba0c1da30852393.pdf
  • U.S. CDC. (2015). Hierarchy of controls. centers for disease control and prevention. https://www.cdc.gov/niosh/docs/2015-197/pdfs/2015-197.pdf
  • U.S. Green Building Council (USGBC). (2013). LEED reference guide for building operations and maintenance, v4. https://www.usgbc.org/guide/om
  • U.S. Green Building Council (USGBC). (2020). Releases new LEED guidance to address COVID-19 and support buildings with reopening strategies. https://www.usgbc.org/articles/usgbc-releases-new-leed-guidance-address-covid-19 -and-support-buildings-reopening
  • Villanueva, F., Notario, A., Cabanas, B., Martín, P., Salgado, S., & Gabrield, M. F. (2021). Assessment of CO2 and aerosol (PM2.5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: the case of a metropolitan area in Central-Southern Spain. Environmental Research, 197, 111092. https://doi.org/10.1016/j.envres.2021.111092.
  • Vozzola, M. (2020). The support of graphic representation for the analysis of the distribution and the preparation of temporary works in the post pandemic period. VITRUVIO- International Journal of Architectural Technology and Sustainability, 5(2), 39-54. https://doi.org/10.4995/vitruvio-ijats.2020.14480
  • Wehbe, R., & Shahrour, I. (2019). Use of bım and smart monitoring for buildings’ indoor comfort control. MATEC Web Conferences, 295, 02010. https://doi.org/10.1051/matecconf/201929502010
  • Wehbe, R., & Shahrour, I. (2021). Assessment and improvement of anti-COVID-19 measures in higher education establishments. Sustainability, 13(11), 5989. https://doi.org/10.3390/su13115989
  • World Health Organization (WHO). (2020) Rolling updates on coronavirus disease (COVID-19). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
  • World Health Organization (WHO). (2020). Novel coronavirus (2019-NCoV): Situation Report 1. https://apps.who.int/iris/handle/10665/330760
  • YÖK. (2020). Yüksek öğretim kurumlarında sağlıklı ve temiz ortamların geliştirilmesi kılavuzu. https://www.yok.gov.tr/Sayfalar/Haberler/2020/yuksekogretim-kurumlarinda-saglikli-ve-temiz-ortamlarin-gelistirilmesi-kilavuzu-yayimlandi.aspx
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ