Isı ve elektrik enerjisi üretimi için doğal gaza yeşil bir çözüm: Güneş enerjisi uygulamalarıyla bir örnek olay incelemesi

Enerji, ekonomik, endüstriyel ve toplumsal kalkınma için hayati öneme sahiptir. Enerji tüketimindeki artış istikrarlı bir şekilde artmaktadır. Sera gazı emisyonlarına, hava, su ve toprak kirliliğine neden olan fosil kökenli yakıtların yerini sürdürülebilir ve çevre dostu yenilenebilir enerji kaynakları almaktadır. Yenilenebilir enerji kaynaklarının temelini oluşturan güneş enerjisi, hem elektrik enerjisi üretiminde hem de termal enerji üretiminde kullanılabilmektedir. Bu çalışmada güneş enerjisi uygulamaları ile Ankara ili iklim şartlarında, iki kişilik bir evin elektrik ve ısınma ihtiyacının karşılanması incelenmiş, çevresel analizi yapılmıştır. Çalışmada fotovoltaik paneller, vakum tüplü U-borulu güneş kolektörü ve fotovoltaik termal panellerin ayrı ayrı ve birlikte kullanımı ile elde edilecek enerji miktarı hesaplanmıştır. Ayrıca fotovoltaik termal panellerde çalışma akışkanı olarak su ile birlikte Al2O3+CuO hibrit nanoakışkanı da kullanılarak, nanoakışkan kullanımının termal enerji transferine etkisi de araştırılmıştır. Çalışma sonucunda, sadece fotovoltaik panel kullanımı ile enerji ihtiyacının karşılanması için 11 adet 325 W gücünde panele, sadece fotovoltaik termal panel kullanımı ile karşılanması durumunda ise 7 adet 300 W elektrik, 600 W termal güce sahip panel gerektirdiği hesaplanmıştır. Ayrıca fotovoltaik termal sistemde Al2O3-CuO hibrit nanoakışkanının saf su yerine kullanılması ile verimde %19.41 oranında artış sağladığı görülmüştür. Enerji ihtiyacını karşılamak için güneş enerjisi kullanımının dünyada artan doğal gaz sorununa hem yerli enerji kaynağı kullanılarak ekonomiye hem de sera gazı emisyonlarını azaltarak çevresel çözüm olacağı önerilmektedir.

A green solution to natural gas for heat and electric power generation: A case study with solar energy applications

Energy is crucial for economic, industrial, and social development. The increase in energy consumption is steadily rising. Fossil fuels, which cause greenhouse gas emissions, air, water, and soil pollution, are being replaced by sustainable and environmentally friendly renewable energy sources. Solar energy, which is the basis of renewable energy sources, can be used in both electricity and thermal energy production. In this study, the use of solar energy applications for meeting the electricity and heating needs of a two-person household under Ankara's climate conditions was examined, and an environmental analysis was conducted. The amount of energy that will be obtained by using photovoltaic panels, vacuum tube U-pipe solar collectors, and photovoltaic thermal panels separately and together was calculated. In addition, the effect of using Al2O3+CuO hybrid nanofluid in photovoltaic thermal panels as a working fluid on thermal energy transfer was investigated. As a result of the study, it was calculated that 11 panels with a power of 325 W would be required for meeting the energy demand with only photovoltaic panel use, and 7 panels with 300 W electricity and 600 W thermal power would be required for meeting the energy demand with only photovoltaic thermal panel use. Moreover, it was observed that using Al2O3-CuO hybrid nanofluid in photovoltaic thermal systems instead of pure water increased efficiency by 19.41%. It is recommended that the use of solar energy to meet energy needs will be both an economic solution by using a domestic energy source and an environmental solution by reducing greenhouse gas emissions, addressing the increasing natural gas problem in the world.

___

  • Albadry, S., Tarabieh, K., & Sewilam, H. (2017). Achieving net zero-energy buildings through retrofitting existing residential buildings using PV panels. Energy Procedia, 115, 195-204. https://doi.org/10.1016/j.egypro.2017.05.018
  • Alkan, S., Öztürk, A., Zavrak, S., Tosun, S., & Avcı, E. (2014). Bir evin elektrik enerjisi ihtiyacını karşılayacak fotovoltaik sistemin kurulumu. ELECO 2014 Elektrik – Elektronik – Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu (pp. 78-82), Bursa: ELECO.
  • ANSYS, Inc. (2016) ANSYS Fluent User’s Guide, Release 17.2.
  • Alternative Energy Tutorials: Evacuated Tube Collector (2022, November 21). https://www.alternative-energy-tutorials.com/solar-hot-water/evacuated-tube-collector.html
  • Ateş, A.M. (2023). 3-Years energetic and economic analysis of a 30kWp rooftop PV power plant. Engineer and Machinery, 64(710), 175-194. https://doi.org/10.46399/muhendismakina.1072368
  • Bahar, E.M., & Ökten, M. (2021). Türkiye’nin bölümlerinin PVSYST programı ile analizi. Yeni Türkiye Dergisi, 118, 362-372.
  • Bakır, H. (2022). Thermal image analysis for fault detection of PV systems in Ankara/Turkey. European Journal of Science and Technology, Special Issue 36, 41-44. https://doi.org/10.31590/ejosat.1098973
  • Bellos, E., Tzivanidis, C., Prassas, A., & Antonopoulos, K.A. (2015). Modelling of a solar assisted floor heating system with TRNSYS. Global Conference on Global Warming (GCGW 2015), Athens.
  • Bhuvad, S.S., & Udayraj. (2022). Investigation of annual performance of a building shaded by rooftop PV panels in different climate zones of India. Renewable Energy, 189, 1337-1357. https://doi.org/10.1016/j.renene.2022.03.004
  • Boyle, G. (2004). Renewable Energy: Power for a Sustainable Future (2nd ed.). Oxford University Press.
  • Carbontradexchange. (2023, January 12). http://www.carbontradexchange.com/knowledgecentre/case-studies.html
  • Demirbilek, N., Kaya, M., & Yakuphanoğlu, F. (2023). Investigation of structural and optical properties of pure ZnO and co-doped ZnO:Al:Mnx (x=1%, 2%, 3%, 5% at.) semiconductor thin films and electrical properties of produced diodes. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 163 – 174. https://doi.org/10.17341/gazimmfd.1001776
  • Deymi-Dashtebayaz, M., Nikitin, A., Norani, M., Nikitina, V., Hekmatshoar, M., & Shein, V. (2022). Comparison of two hybrid renewable energy systems for a residential building based on sustainability assessment and emergy analysis. Journal of Cleaner Production, 379, 134592. https://doi.org/10.1016/j.jclepro.2022.134592
  • Energy Information Administration (EIA)- Photovoltaics and electricity (2022, November 20). https://www.eia.gov/energyexplained/solar/photovoltaics-and-electricity.php
  • Enerji ve Tabii Kaynaklar Bakanlığı- Güneş enerjisi potansiyeli atlası (2022, November 22). https://gepa.enerji.gov.tr/MyCalculator/pages/6.aspx
  • Enerji Piyasası Denetleme Kurulu (EPDK)- Elektrik birim fiyatı (2022, November 22). www.epdk.gov.tr/Detay/Icerik/3-0-1/tarifeler
  • Enerji ve Tabii Kaynaklar Bakanlığı- Türkiye elektrik üretimi ve elektrik tüketim noktası emisyon faktörleri (2023, January 1). https://enerji.gov.tr/evced-cevre-ve-iklim-elektrik-uretim-tuketim-emisyon-faktorleri
  • Er, Z. (2023). Solar radiation forecasts and a tiny house PV off-grid system. European Journal of Science and Technology, 47, 7-12. https://doi.org/10.31590/ejosat.1234216
  • Gu, Y., Zhang, X., Myhren, J.A., Han, M., Chen, X., & Yuan, Y. (2018). Techno-economic analysis of a solar photovoltaic/thermal concentrator for building application in Sweden using Monte Carlo method. Energy Conversion and Management, 165, 8-24. https://doi.org/10.1016/j.enconman.2018.03.043
  • Gürbüz, E. Y., Variyenli, H., Sözen, A., Khanlari, A., & Ökten, M. (2021). Experimental and numerical analysis on using CuO-Al2O3/water hybrid nanofluid in a U-type tubular heat exchanger. International Journal of Numerical Methods for Heat and Fluid Flow, 31(1), 519-540. https://doi.org/10.1108/HFF-04-2020-0195
  • Hottel, H.C., & Woertz, B.B., (1942). Performance of flat-plate solar -heat collectors. Trans ASME, 64(91).
  • Jafarkazemi, F., & Ahmadifard, E. (2013). Energetic and exergetic evaluation of flat plate solar collectors. Renewable Energy, 56, 55-63. https://doi.org/10.1016/j.renene.2012.10.031
  • Kalogirou, S.A., Karellas, S., Braimakis, K., Stanciu, C., & Badescu, V. (2016). Exergy analysis of solar thermal collectors and processes. Progressive Energy Combustion Science, 56, 106-137. https://doi.org/10.1016/j.pecs.2016.05.002
  • Kaya, H., Alkasem, M., & Arslan, K. (2020). Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency, Renewable Energy, 162, 267-284. https://doi.org/10.1016/j.renene.2020.08.039
  • Khanlari, A., Tuncer, A.D., Afshari, F., & Sözen, G. (2023). Utilization of recyclable aluminum cans as fins in a vertical solar air heating system: An experimental and numerical study. Journal of Building Engineering, 63(A), 105446. https://doi.org/10.1016/j.jobe.2022.105446
  • Kıran Naik, B., & Muthukumar, P. (2019). Performance assessment of evacuated U-tube solar collector: A numerical study. Sådhanå, 44(23), https://doi.org/10.1007/s12046-018-0974-z
  • Kim, H., Kim, J., & Cho, H. (2017). Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid. Energy, 118, 1304-1312. https://doi.org/10.1016/j.energy.2016.11.009
  • Krarti, M. (2021). Impact of PV integrated rotating overhangs for US residential buildings. Renewable Energy, 174, 835-849. https://doi.org/10.1016/j.renene.2021.04.113
  • Li, Y., Liang, X., Song, W., Li, T., Wang, D., & Liu, Y. (2022). Optimization and thermal performance of U-type evacuated tube solar collector filled with phase change material. Energy Reports, 8, 6126-6138. https://doi.org/10.1016/j.egyr.2022.04.054
  • Lim, C.S.L., & Sobhansarbandi, S. (2022). CFD modeling of an evacuated U-tube solar collector integrated with a novel heat transfer fluid. Sustainable Energy Technologies and Assessments, 52(A), 102051. https://doi.org/10.1016/j.seta.2022.102051
  • Lupu, A.G., Homutescu, V.M., Balanescu, D.T., & Popescu, A. (2018). Efficiency of solar collectors – a review. IOP Conference Series: Materials Science and Engineering, 444, 082015. https://doi.org/10.1088/1757-899X/444/8/082015
  • Mercan, M., & Yurddaş, A. (2019). Numerical analysis of evacuated tube solar collectors using nanofluids. Solar Energy, 191, 167-179. https://doi.org/10.1016/j.solener.2019.08.074
  • Meteoroloji Genel Müdürlüğü (2022, November 22). https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=undefined&m=ANKARA
  • Mohammed, A., Ghaithan, A., Al-Hanbali, A., Attia, A.M., Saleh, H., & Alsawafy, O. (2022). Performance evaluation and feasibility analysis of 10 kWp PV system for residential buildings in Saudi Arabia. Sustainable Energy Technologies and Assessments, 51, 101920. https://doi.org/10.1016/j.seta.2021.101920
  • Moran, M.J., & Shapiro, H.N. (2006). Fundamentals of Engineering Thermodynamics (5th. Ed.). Hoboken, NJ: John Wiley & Sons
  • Morena, D., Fernandez, M., & Esquivias, P.M. (2017). A comparison of closed-form and finite-element solutions for heat transfer in a nearly horizontal, unglazed flat plate PVT water collector: Performance assessment. Solar Energy, 141, 11-24. https://doi.org/10.1016/j.solener.2016.11.015
  • Mor Fikirler- Çatılara güneş paneli kurma maliyeti (2022, Kasım 22). https://morfikirler.com/catilara-gunes-paneli-kurmak-maliyeti/
  • O’Neil, J.E.T., & Sobhansarbandi, S. (2022). Thermal performance investigation of energy storage based U-pipe evacuated tube solar collector: An experimental study. Sustainable Energy Technologies and Assessments, 52, 102146. https://doi.org/10.1016/j.seta.2022.102146
  • Ökten, K. (2022). PV panel ile bütünleştirilmiş FDM-Nanopartikül karışımının 1-D matematiksel model kullanılarak incelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi PART C: Tasarım ve Teknoloji, 10(3), 532-546. https://doi.org/10.29109/gujsc.1068074
  • Ökten, M. (2021). An investigation on provincial production & consumption of electric energy: A case analysis for Ankara. Kocaeli Journal of Science and Engineering, 4(1), 59-68. https://doi.org/10.34088/kojose.800608
  • Özakın, A.N., & Kaya, F. (2019). Effect on the exergy of the PVT system of fins added to an air-cooled channel: A study on temperature and air velocity with ANSYS Fluent. Solar Energy, 184, 561-569. https://doi.org/10.1016/j.solener.2019.03.100
  • Özsoy, A., & Galip, M. (2018). Vakum tüplü U-borulu güneş kollektörünün güneş simülatöründeki test sonuçlarının analizi. Politeknik Dergisi, 21(1), 229-236. https://doi.org/10.2339/politeknik.385469
  • Podder, B., Das, S., & Biswas, A. (2022). Numerical analysis of a small sized water based solar photovoltaic-thermal collector. International Journal of Green Energy. https://doi.org/10.1080/15435075.2021.2023881
  • Rahaman, M.H., & Iqbal, M.T. (2019). A comparison of solar photovoltaic and solar thermal collector for residential water heating and space heating system. Preprints, https://doi.org/10.20944/preprints201910.0003.v1.
  • Ramos, C.A.F., Alcaso, A.N., & Cardoso, A.J.M. (2019). Photovoltaic-thermal (PVT) technology: Review and case study. IOP Conference Series: Earth and Environmental Science, 354, 012048. https://doi.org/10.1088/1755-1315/354/1/012048
  • Sarhaddi, F., Farahat, S., Ajam, H., & Behzadmehr, A. (2010). Exergetic performance evaluation of a solar photovoltaic (PV) array. Australian Journal Basic & Applied Science, 4, 502-519. https://doi.org/10.1155/2009/313561
  • Sim, M., & Suh, D. (2021). A heuristic solution and multi-objective optimization model for life-cycle cost analysis of solar PV/GSHP system: A case study of campus residential building in Korea. Sustainable Energy Technologies and Assessments, 47, 101490. https://doi.org/10.1016/j.seta.2021.101490
  • Solimpeks- Güneş panelleri çeşitleri (2022, November 11). http://solimpeksgunespaneli.com/gunespaneli-fotovoltaik-cesitleri-nelerdir/
  • Strebkov, D.S., & Filippchenkova, N.S. (2021). Results of CFD-simulation of a solar photovoltaic-thermal module. IOP Conference Series: Earth and Environmental Science, 659, 012113. https://doi.org/10.1088/1755-1315/659/1/012113
  • Swese, E.O.E., & Hançerlioğulları A. (2022). Investigation of performance on photovoltaic/thermal (PV/T) system using magnetic nanofluids. Politeknik Dergisi, 25(1), 411-416. https://doi.org/10.2339/politeknik.1076781
  • Şen, E., & Çeliktaş, M.S. (2022). A review of PV cooling and thermal energy storage in PV/T systems based phase change materials. Beykent University Journal of Science and Engineering, 15(1), 55-76. https://doi.org/10.20854/bujse.1071145
  • Tarragona, J., Pisello, A.L., Fernandez, C., Cabeza, L.F., Paya, J., Marchante-Avellaneda, J., & de Garcia, A. (2022). Analysis of thermal energy storage tanks and PV panels combinations in different buildings controlled through model predictive control. Energy, 239, 122201. https://doi.org/10.1016/j.energy.2021.122201
  • Tavares, I., Manfredini, R., Almeida, J., Soares, J., Ramos, S., Foroozandeh, Z., & Vale, Z. (2022). Comparison of PV power generation forecasting in a residential building using ANN and DNN. IFAC-PapersOnLine, 55(9), 291-296. https://doi.org/10.1016/j.ifacol.2022.07.051
  • Teo, H.G., Lee, P.S., & Hawlader, M.N.A. (2012). An active cooling system for photovoltaic modules. Applied Energy, 90, 309-315. https://doi.org/10.1016/j.apenergy.2011.01.017
  • Tuncer, A.D., Khanlari, A., Afshari, F., Sözen, A., Çiftçi, E., Kusun, B., & Şahinkesen, İ. (2023). Experimental and numerical analysis of a grooved hybrid photovoltaic-thermal solar drying system. Applied Thermal Engineering, 218, 119288. https://doi.org/10.1016/j.applthermaleng.2022.119288
  • Türkiye Cumhuriyeti Merkez Bankası- Enflasyon hesaplayıcı (2022, Kasım 22). https://herkesicin.tcmb.gov.tr/wps/wcm/connect/ekonomi/hie/icerik/enflasyon+hesaplayici
  • Wang, R.Z., Xu, Z.Y., & Ge, T.S. (2016). Introduction to solar heating and cooling systems. Advances in Solar Heating and Cooling, 3-12. https://doi.org/10.1016/B978-0-08-100301-5.00001-1
  • Wole-Osho, I., Adun, H., Adedeji, M., Okonkwo, E.C., Kavaz, D., & Dağbaşı, M. (2020). Effect of hybrid nanofluids mixture ratio on the performance of a photovoltaic thermal collector. International Journey of Energy Research, 1-18, https://doi.org/10.1002/er.5619.
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ