Nano Sensörlerin Farklı Gaz Ortamlarında Geçiş Pencerelerinin Hesaplanması

Nano ve Terahertz terimlerini her geçen gün daha çok duymaktayız. Nano teknolojisi adından da anlaşılacağı gibi nano boyutta materyal yapımı ve tasarlanmasını inceler. Nano teknolojisi birçok sektörde devrim niteliğinde değişiklikler meydana getirmiştir. Bunlardan bir tanesi ise nano boyutta sensörlerin tasarlanıp kullanılmasıdır. Nano sensörlerin tasarlanması ve kullanılabilmesinde bazı noktalara dikkat edilmesi gerekmektedir. Nano ölçekli makineler boyutları itibariyle nano boyutlu antenlere ihtiyaç duyar, bu nedenledir ki nano boyutlu antenler Terahertz frekanslarında çalışır. Terahertz frekansları ortamı oluşturan atomların titreşimlerinden etkilenir. Terahertz frekansları titreşimlerin olduğu bölgelerden geçmekte zorlanır bunun için elektromanyetik dalgaların rahat geçebileceği geçiş pencereleri bulunmalıdır. Bu yüzden bu çalışmada farklı gazların geçiş pencerelerinin nasıl bulunduğunu anlatılacaktır.

Calculating of Nano Sensor’s Transmission Window According to the Different Gas Environments

We hear the Terahertz and Nano term more every passing days. As we understood from its name nano technology investigates production and design of nano sized material. Nanotechnology has brought revolutionary changes in many sectors. One of these is designing and using nano sensors in nano dimensions. It should considered some points while designing and using nano sensors. Nano sensors need nano antennas because of their size limitations that is why nano sensors work on Terahertz frequencies. Terahertz frequencies affected from the environment’s vibration atoms. Terahertz frequencies cannot pass from the vibration atom’s environments that is why the transmission windows which the electromagnetic frequencies could easily pass need to be found. That is why in this paper it will be described that how the transmission windows would be founded in different gasses environments.

___

  • Akkaş, M. A. ve Sokullu, R., 2015. Wireless underground sensor networks: channel modeling and operation analysis in the terahertz band. International Journal of Antennas and Propagation, 2015.
  • Akkaş, M. A., 2016. Terahertz channel modelling of wireless ultra-compact sensor networks using electromagnetic waves. IET Communications, 10(13), 1665-1672.
  • Akyildiz, I. F. ve Jornet, J. M., 2010.Electromagnetic wireless nanosensor networks. Nano Communication Networks, Cilt 1.1, 3-19.
  • Elrashidi, A., Elleithy, A., Albogame, M. ve Elleithy, K., 2012. Underwater wireless sensor network communication using electromagnetic waves at resonance frequency 2.4 GHz. In Proceedings of the 15th Communications and Networking Simulation Symposium (p. 13). Society for Computer Simulation International.
  • Federici, J. ve Lothar, M., 2010. Review of terahertz and subterahertz wireless communications.Journal of Applied Physics, Cilt 107.11, 111101.
  • Feynman, R. P., 1960. There's plenty of room at the bottom. Engineering and science, 23(5), 22-36.
  • Howard, S. L., Schlegel, C. ve Iniewski, K., 2006. Error control coding in low-power wireless sensor networks: When is ECC energy-efficient?. EURASIP Journal on Wireless Communications and Networking, 2006(2), 29-29.
  • http://hitran.iao.ru/ erişim tarihi: 18.07.17
  • Jornet, J. M. ve Akyildiz, I. F., 2013. Fundamentals of electromagnetic nanonetworks in the terahertz band. Foundations and Trends® in Networking, 7(2-3), 77-233. doi: 10.1561/1300000045.
  • Kutlu, N., 2012. 4-Amino-1H-Benzo [4, 5] İmidazo [1, 2, α] Primidin-2-One Bileşiğinin Koordinasyon Modları ve Titreşim Frekanslarının Gaussian 03 ile İncelenmesi.
  • Mao, G., Anderson, B. D. ve Fidan, B., 2007. Path loss exponent estimation for wireless sensor network localization. Computer Networks, 51(10), 2467-2483.
  • O’Sullivan C.M.M. ve Murphy J. A.,2012. Field guide to terahertz sources, detectors, and optics. SPIE Press.
  • Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M. ve Chance, K., 2009. The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(9), 533-572.
  • Rothman, L. S., Rinsland, C. P., Goldman, A., Massie, S. T., Edwards, D. P., Flaud, J. M. ve Schroeder, J. , 1998. The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition. Journal of Quantitative Spectroscopy and Radiative Transfer, 60(5), 665-710.
  • Takahashi, M. 2014. Terahertz Vibrations and Hydrogen-Bonded Networks in Crystals, Crystals 2014, 4(2), 74-103
  • Vuran, M. C. ve Akyildiz, I. F., 2010. Channel model and analysis for wireless underground sensor networks in soil medium. Physical Communication, 3(4), 245-254. doi: 10.1016/j.phycom.2010.07.001.
  • Yalçın, Y., ve Atiş, M., 2015. 4-(Metilsülfanil) fenilboronik asit molekülünün titreşim spektrumlarının deneysel ve teorik yöntemlerle incelenmesi (Master's thesis, Nevşehir Hacı Bektaş Veli Üniversitesi)