Yeni Azakalkon-Şeker Hibrit Bileşiklerinin Sentezi

Doğada bulunan ve bitkilerin sentezledikleri biyoaktif bileşiklerin pek çoğu flavonoid türü bileşiklerdir. Flavonoid ailesinin önemli üyelerinden olan kalkon sınıfı bileşikler  ve bunların alternatif türevleri olan azakalkon bileşikleri sahip oldukları geniş biyolojik, farmakolojik (antibakteriyal, sitotoksik, antimalaryal, enzim inhibisyonu, antitüberklostatik, antioksidan vb.) ve boya özelliklerinden ötürü son yılların ilgi odağı haline gelmişlerdir. Diğer taraftan karbohidrat bileşiklerinin biyolojik sistemlerde bağışıklık sistemi, iltihap oluşumu, hücre büyümesi ve adezyon üzerine etkileri bilinmektedir. Şekerlerin heterosikliklerle bir araya geldiği glikohibrit bileşikler ise antikanser ve antitümör ilaçlarında önemli etkiye sahiptirler ve enzim aktivitesinin inhibisyonunda iyi bir glikozil verici olarak davranmaktadırlar. Bu çalışmada amino sübstitüe azakalkon bileşiklerinden (1-3) N-β-D-glikopiranosit (4-6) ve N-glikozidik 2,3,4,6-tetra-O-asetil-β-D-glikopiranosit (7-9) türevlerinin sentezi gerçekleştirilmiştir.

Synthesis of Novel Azachalcone-Sugar Hybrid Compounds

Many of the bioactive compounds found in nature and synthesized by plants are flavonoid-type compounds. Chalcones and their alternative derivatives azachalcones, which are important members of the flavonoid family, have become the focus of attention in recent years due to their wide range of biological, pharmacological (antibacterial, cytotoxic, antimalarial, enzyme inhibition, antitubercostatic, antioxidant etc.) and dye properties. On the other hand, it is known that carbohydrate compounds in biological systems have effects on inflammation, immune responses, cell growth, and adhesion. Glycohybrid heterocyclic compounds, a heterocyclic and sugar combination, have significant effect in anticancer and antitumor drugs, and behave as a good glycosyl donor on the inhibition of enzyme activity. In this study, synthesis of N-β-D-glucopyranoside (4-6) and N-glycosidic 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (7-9) derivatives were performed via amino substituted azachalcones.

___

  • Albay, C., Kahriman, N., Yılmaz İskender, N., Alpay Karaoğlu, Ş. ve Yaylı, N., 2011. Synthesis and antimicrobial activity of methoxy azachalcones and N-alkyl substituted methoxy azachalconium bromides. Turkish Journal of Chemistry, 35, 441-454.
  • Bubb, W.A., 2003. NMR Spectroscopy in the study of carbohydrates: characterizing the structural complexity. Concepts in Magnetic Resonance Part A, 19A (1), 1-19.
  • Chamberlain, S.D., Moorman, A.R., Burnette, T.C., de Miranda, P. ve Krenitsky, T.A., 1994. Novel carbohydrate conjugates as potential prodrugs of acyclovir. Antiviral Chemistry&Chemotherapy, 5 (2), 64-73.
  • Chen, B., Liu, Y., Liu, H.W., Wang, N.L., Yang, B.F. ve Yao, X.S., 2008. Iridoid and aromatic glycosides from Scrophularia ningpoensis HEMSL and their inhibition of [Ca2+]i increase induced by KCl. Chemistry &Biodiversity, 5, 1723-1735.
  • Colotta, V., Catarzi, D., Varano, F., Filacchioni, G., Cecchi, L., Galli, A., Costagli, C., 1996. Synthesis and binding activity of some pyrazolo[1,5-c]quinazolines as tools to verify an optional binding site of a benzodiazepine receptor ligand. Journal of Medicinal Chemistry, 39, 2915–2921.
  • Delavaux-Nicot, B., Maynadie, J., Lavabre, D. ve Fery-Forgues, S., 2007. Ca2+vs Ba2+electrochemical detection by two disubstituted ferrocenyl chalcone chemosensors. Study of the ligand–metal interactions in CH3CN. Journal of Organometallic Chemistry, 692, 874–886.
  • Dhar, P.C., Pal, A., Mohanty, P. ve Bag, B., 2015. Colorimetric detection of Cu(II) ion with a 1,3-bis-azachalcone derivative. Sensors and Actuators B: Chemical, 219, 308–314.
  • Gasull, E.I., Blanco, S.E. ve Ferretti, F.H., 2002. A theoretical and experimental studyof adsorption from dilute cyclohexane solutions of non-electrolytes: 4-X-chalcones on silica gel. Journal of Molecular Structure: Theochem, 579, 121–137.
  • Kahriman, N., Yılmaz İskender, N., Yücel, M., Yaylı, N., Demir, E. ve Demirbağ, Z., 2012. Microwave- assisted synthesis of 1,3’-diazaflavanone/flavones and their alkyl derivatives with antimicrobial activity. Journal of Heterocyclic Chemistry, 49(1), 71-79.
  • Kahriman, N., Yaylı, B., Aktaş, A., İskefiyeli, Z., Beriş, F.Ş. ve Yaylı, N., 2013. Synthesis, antibacterial and antioxidant activities of new 1-alkyl-4-(1-alkyl-4-oxo-1,4-dihydroquinolin-2-yl)pyridinium bromides. European Journal of Medicinal Chemistry, 69, 348-355.
  • Lagoja, I.M., 2005. Pyrimidine as constituent of natural biologically active compounds. Chemistry & Biodiversity, 2, 1-50.
  • Lahtchev, K.L., Batovska, D.I., Parushev, St.P., Ubiyvovk, V.M. ve Sibirny, A.A., 2008. Antifungal activity of chalcones: A mechanistic study using various yeast strains. European Journal of Medicinal Chemistry, 43 (10), 2220-2228.
  • Li, C.W., Shen, T.H. ve Shih T.L., 2017. Reinvestigation of synthesis of halo-substituted 3-phenyl-1-(2-pyridyl)-2-propen-1-ones (azachalcones). A tandem reaction for formation of penta-substituted cyclohexanols. Tetrahedron, 73, 4644-4652.
  • Liu, M., Wilairat, P. ve Go, M.L., 2001. Antimalarial alkoxylated and hydroxylated chalones:  structure−activity relationship analysis. Journal of Medicinal Chemistry, 44 (25), 4443-4452.
  • Liu, Y.Y., Shi, H., He, G.K., Song, G.L., Zhu, H.J. 2012. Synthesis, crystal structures, and fungicidal activity of novel 1,5-diaryl-3-(glucopyranosyloxy)-1H-pyrazoles. Helvetica Chimica Acta, 95, 1645-1656.
  • Lugemwa, F.N., Shaikh, K. ve Hochstedt, E., 2013. Facile and efficient acetylation of primary alcohols andphenols with acetic anhydride catalyzed by dried sodium bicarbonate. Catalysts, 3, 954-965.
  • Makino, T., Kanemaru, M., Okuyama, S., Shimizu, R., Tanaka, H. ve Mizukami, H., 2013. Anti-allergic effects of enzymatically modified isoquercitrin (a-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, a-oligoglucosyl rutin, and quercetin, when administered orally to mice. Journal of Natural Medicines, 67, 881-886.
  • Mokale, S.N., Dube, P.N., Bhavale, S.A., Sayed, I., Begum, A., Nevase, M.C., Shelke, V.R. ve Mujaheed, A., 2015. Synthesis, in-vitro screening, and docking analysis of novel pyrrolidine and piperidine-substituted ethoxy chalcone as anticancer agents. Medicinal Chemistry Research, 24 (5), 1842-1856.
  • Radhakrishnan, S.K., Shimmon, R. G., Conn C., ve Baker, A.T., 2015. Azachalcones: A new class of potent polyphenol oxidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 25, 1753–1756.
  • Satyanarayana, M., Tiwari, P., Tripathi, B.K., Srivastava, A.K. ve Pratap, R., 2004. Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorganic & Medicinal Chemistry, 12 (5), 883-889.
  • Shettigar, S., Chandrasekharan, K., Umesh, G. ve Sarojini, B.K., 2006. Studies on nonlinear optical parameters of bis-chalcone derivatives doped polymer. Polymer, 47, 3565–3567.
  • Shettigar, S., Umesh, G., Chandrasekharan, K. ve Sarojini, B.K., 2008. Studies on third-order nonlinear optical properties of chalcone derivatives in polymer host. Optical Materials, 30, 1297–1303.
  • Srivastava, A. ve Loganathan, D., 2013. Synthesis of guanidino sugar conjugates as GlcβArg analogs. Glycoconjugate Journal, 30, 769-780.
  • Usta, A., Öztürk, E. ve Beriş, F.Ş., 2014. Microwave-assisted preparation of azachalcones and their N-alkyl derivatives with antimicrobial activities. Natural Product Research, 28 (7), 483-487.
  • Varadi, A., Levai, D., Toth, G., Horvath, P., Noszal, B. ve Hosztafi, S., 2012. Glucosides of morphine derivatives: synthesis and characterization. Monatshefte für Chemie-Chemical Monthly, 144, 255–262.
  • Ventura, T.L.B, Calixto, S.D., de Azevedo Abrahim-Vieira, B., de Souza A.M.T., Mello, M.V.P., Rodrigues, C.R., de Mariz e Miranda, L.S., Alves de Souza, R.O.M., Leal, I.C.R., Lasunskaia, E.B. ve Muzitano, M.F., 2015. Antimycobacterial and anti-inflammatory activities of substituted chalcones focusing on an anti-tuberculosis dual treatment approach. Molecules, 20(5), 8072-8093.
  • Vogel, S., Ohmayer, S., Brunner, G. ve Heilmann, J., 2008. Natural and non-natural prenylated chalcones: Synthesis, cytotoxicity and anti-oxidative activity. Bioorganic & Medicinal Chemistry, 16(8), 4286-4293.
  • Wu, J.H., Wang, X.H., Yi, Y.H. ve Lee, K.H., 2003. Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorganic & Medicinal Chemistry Letters, 13 (10), 1813-1815.
  • Yamazoe, A., Hayashi, K., Kuboki, A., Ohira, S. ve Nozaki, H., 2004. The isolation, structural determination, and total synthesis of terfestatin A, a novel auxin signaling inhibitör from Streptomyces sp. Tetrahedron Letters, 45, 8359–8362.
  • Yaylı, N., Üçüncü, O., Yaşar, A., Küçük, M., Yaylı, N., Akyüz, E. ve Karaoğlu, Ş.A., 2006. Synthesis and biological activities of N-alkyl derivatives of o-, m-, and p-nitro (E)-4-azachalcones and stereoselective photochemistry in solution, with theoretical calculations. Turkish Journal of Chemistry, 30, 505-514.
  • Yaylı, N., Mısır, G., Yaylı, N., Yaşar, A., Demir, E. ve Demirbağ, Z., 2010. Synthesis and antimicrobial activity of N-alkyl substituted p-methyl (E)-3- and 4-azachalconium bromides. Turkish Journal of Chemistry, 34, 219-228.
  • Yaylı, B., 2016. Scrophularia kotschyana Benth. üzerinde farmakognozik çalışmalar. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Sağlık Bilimleri Enstitüsü, Trabzon.
  • Yin, X.J., Zheng, L., Li, Y. ve Yin, S.F., 2010. Synthesis and calming activity of 2-amino-4-(4-β-D-allopyranoside-phenyl)-6-3(4)-substituted phenylpyrimidines. Chemistry of Natural Products, 46(5), 779-782.
  • Zhai, L., Chen, M., Blom, J., Theander, T.G., Christensen, S.B. ve Kharazmi, A., 1999. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. Journal of Antimicrobial Chemotherapy, 43 (6), 793-803.
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ