Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatiksel yöntemle optimizasyonu

Birçok endüstriyel tesisin hammadde kaynağı olarak kullanılan yağların hidrolizi önemli bir kimyasal prosestir. Yağ asitleri yenilenebilir kaynaklardan üretilen yağların hidrolizi ile sentezlenir. Son yıllarda bitkisel ve hayvansal yağlara alternatif mikroalglerden elde edilen yağların hammadde kaynağı olarak kullanılması giderek yaygınlaşmaktadır. Bu çalışmada Design Expert bilgisayar programı yardımı ile Chlorella protothecoides mikroalg yağının Noopazyme lipazı katalizörlüğünde hidroliz tepkimesine etki eden parametrelerin (lipaz miktarı, sıcaklık, yağ/su (g/g)) etkileri incelenerek yüksek dönüşümle serbest yağ asitleri (SYA) elde etmek amacı ile optimizasyonu yapılmıştır. Deneysel çalışmalar sonucunda en yüksek SYA içeriği (%98), lipaz miktarı %15, yağ/su oranı (g/g) 0.20 ve sıcaklık 55°C olduğu koşullarda elde edilmiştir. Ayrıca Noopazyme lipazının 4 kez tekrar kullanılması sonucunda aktivitesinin %40’ını kaybettiği belirlenmiştir.

Statistical optimization of hydrolysis reaction process parameters by lipase catalysis of microalgae oil

Hydrolysis of oils used as the raw material source of many industrial plants is an important chemical process. Fatty acids are synthesized by hydrolysis of oils produced from renewable sources. In recent years, the use of oils derived from microalgae as an alternative to vegetable and animal oils has become commonly increasing. In this study, the effects of the parameters (lipase amount, temperature, oil / water (w/w)) of Chlorella protothecoides microalgae oil were analyzed to obtain high conversion of free fatty acids with the Design Expert computer program. As a result of the experimental studies, the highest FFA content (98%) was obtained under the conditions where lipase amount was 15%, oil/water ratio (g/g) 0.20 and temperature was 55°C. In addition, as a result of 4 reuse of Noopazyme lipase, it was determined that it lost 40% of its activity.

___

  • Aguieiras, E.C.G., Oliveira, E.D., Castro, A.M., Langone, M.A.P. ve Freire, D.M.G. (2014). Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel, 135, 315–321. https://doi.org/10.1016/j.fuel.2014.06.069
  • Altın, N. (2017). Chlorella variabilis Türü Mikroalgin Büyümesine ve Yağ İçeriğine Etki Eden Parametrelerin Belirlenmesi, Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Kocaeli.
  • Bahadi, M., Yusoff, M.F., Salimon, J. ve Derawi, D. (2020). Optimization of response surface methodology by d- optimal design for alkaline hydrolysis of crude palm kernel oil. Sains Malaysiana, 49, 29-41. https://doi.org/10.17576/jsm-2020-4901-04
  • Castro, H.F., Mendes, A.A., Santos, J.C. ve Aguiar, C.L. (2004). Modification of oils and fats by biotransformation. Química Nova, 27, 146–156. https://doi.org/10.1590/S0100-40422004000100025
  • Chen, W., Sun, S., Liang, S., Peng, L., Wang, Y. ve Shen, M. (2014). Lipase-catalyzed hydrolysis of linseed oil: optimization using response surface methodology. Journal of Oleo Science, 64, 619-628. https://doi.org/10.5650/jos.ess13189
  • Chu, B.S., Quek, S.Y. ve Baharin, B.S. (2003). Optimization of enzymatic hydrolysis for concentration of vitamin E in palm fatty acid distillate. Food Chemistry, 80, 295–302. https://doi.org/10.1016/S0308-8146(02)00178-4
  • David, F., Sandra, P. ve Vickers, A.K. (2005). Column selection for the analysis of fatty acids methyl esters. Application Agilent Technologies Incorporation.
  • Hasan, F., Shah, A.A. ve Hameed, A. (2009). Methods for detection and characterization of lipases: a comprehensive review. Biotechnology Advances, 27, 782–798. https://doi.org/10.1016/j.biotechadv.2009.06.001
  • Hung, C.S., Nguyen, C.H., Nguyen, M.L., Tran, P.T., Wang, F.M. ve Guan, Y.L. (2018). Liquid lipase‐catalyzed hydrolysis of gac oil for fatty acid production: Optimization using response surface methodology. Biotechnology Progress, 34, 1129-1136. https://doi.org/10.1002/btpr.2714
  • Kumar, T., Kumar, S. ve Kumar, S. (2003). Adsorption of resorcinol and catechol on granular activated carbon: equilibrium and kinetics. Pergamon Carbon, 41, 3015–3025. https://doi.org/10.1016/S0008-6223(03)00431-7
  • Maruyama, T., Nakajima, M., Ichikawa, S., Nabetani, H., Furusaki, S. ve Seki, M. (2000). Oil–water interfacial activation of lipase for interesterification of triglycerideand fatty acid. Journal of American Oil Chemistry Society, 77, 1121–1127. https://doi.org/10.1007/s11746-000-0176-4
  • Montgomery, C.D. (2012). Design and Analysis of Experiments (8th ed.). New York: John Wiley & Sons. Murty, V.R., Bhat, J. ve Muniswaran, P.K.A. (2002). Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnology and Bioprocess Engineering, 7, 57–66. https://doi.org/10.1007/BF02935881
  • Neena, N.G. (1997). Application of lipase. Journal of American Oil Chemistry Society, 74, 621–634. https://doi.org/10.1007/s11746-997-0194-x
  • Nigiz, F.U. (2019). Synthesis of a novel graphene–kaolin–alginate adsorbent or dye removal, and optimization of the adsorption by response surface methodology. Research on Chemical Intermediates, 45, 3739–3753. https://doi.org/10.1007/s11164-019-03818-z
  • Oliveira, E.D., Silva, P.R., Ramos, A.P., Aranda D.A.G. ve Freire, D.M.G. (2011). Study of soybean oil hydrolysis catalyzed by Thermomyces lanuginosus lipase and its application to biodiesel production via hydroesterification. Enzyme Research, https:// doi.org/10.4061/2011/618692.
  • Özgen, M. (2013). Halofilik Arkeal Kaynaklı Lipaz Üretim Koşullarının Optimizasyonu ve Aktif Lipazın Saflaştırılması, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Rooney, D. ve Weatherley, L.R. (2001). The effect of reaction conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a stirred liquid–liquid reactor. Process Biochemistry, 36, 947–953. https://doi.org/10.1016/S0032-9592(01)00130-3
  • Russell, V.L. (2009). Response surface methods in using RSM, Journal of Statistical Software, 32, 1-17. https://doi.org/10.18637/jss.v032.i07
  • Sharma, A., Chaurasia, P.S. ve Dalai, A.K. (2012). Enzymatic hydrolysis of cod liver oil for the fatty acids production. Catalysis Today, 207, 93–100. https://doi.org/10.1016/j.cattod.2012.05.006
  • Sharma, S., Gangal, S. ve Rauf, A. (2009). Lipase mediated hydrolysis of Mimusops elengi Parkinsonia aculeata and seed oils for determining the positional distribution of fatty acids. Industrial Crops and Products, 30, 325–328. https://doi.org/10.1016/j.indcrop.2009.04.004
  • Shrivastsvs, A., Sandagar, P., Baja, I. ve Singhal, R. (2008). Media optimization for the production of U-linolenic acid by Cunninghamella Echinulata var. elegans MTCC 522 using response surface methodology. International Journal of Food Engineering, 4, 1–32. https://doi.org/10.2202/1556-3758.1178
  • Stoytcheva, M., Montero, G., Zlatev, R., León, J.A. ve Gochev, V. (2012). Analytical methods for lipases activity determination: a review. Current Analytical Chemistry, 8, 400-407. https://doi.org/10.2174/157341112801264879
  • Sousa, J.S., Cavalcanti-Oliveira, E.D., Aranda, D.A.G. ve Freire, D.M.G. (2010). Application of lipase from the physic nut (Jatropha curcas L.) to a new hydrid (enzyme/chemical) hydroesterification process for biodiesel production. Journal of Moleculaer Catalysis B: Enzymatic, 65, 133–137. https://doi.org/10.1016/j.molcatb.2010.01.003
  • Talukder, M.M.R., Wu, J.C., Fen, N.M. ve Melissa, Y.L.S. (2010a). Two step lipase catalysis for production of biodiesel. Biochemical Engineering Journal, 49, 207–212. https://doi.org/10.1016/j.bej.2009.12.015
  • Talukder, M.M.R, Wu J.C. ve Chua, L.P.L. (2010b). Conversion of waste cooking oil to biodiesel via enzymatic hydrolysis followed by chemical esterification. Energy Fuel, 24,2016–2019. https://doi.org/10.1021/ef9011824
  • Ting, W.J, Huang, C.M., Nair G.R. ve Wu W.T. (2008). An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil. Journal of the Chinese Institute of Chemical Engineers, 39, 203–210. https://doi.org/10.1016/j.jcice.2008.01.004
  • Watanabe, Y., Nagao, T., Nishida, Y., Takagi, Y. ve Shimada, Y. (2007). Enzymatic production of fatty acid methyl esters by hydrolysis of acid oil followed by esterification. Journal of American Oil Chemists’ Society, 84, 1015–1021. https://doi.org/10.1007/s11746-007-1143-4
  • Xin, C., Wei, D. ve Liu D. (2008). Effect of several factors on soluble lipase mediated biodiesel preparation in the biphasic aqueous-oil systems. Journal of Microbiology and Biotechnology, 24, 2097-2102. https://doi.org/ 10.1007/s11274-008-9714-6
  • Yadav, G.D. ve Borkar, I.V. (2009). Synthesis of n-butyl acetamide over immobilized lipase. Journal of Chemical Technology and Biotechnology, 84, 420–426. https://doi.org/10.1002/jctb.2056
  • Yadav, G. D. ve Devi, K.M. (2004). Kinetics of Hydrolysis of Tetrahydrofurfuryl Butyrate in a Three Phase System Containing Immobilized Lipase from Candida Antarctica. Biochemical Engineering Journal, 17, 57–63. https://doi.org/10.1016/S1369-703X(03)00125-6
  • Yadav, G.D., Sajgure, A.D. ve Dhoot, S.B. (2008). Insight into microwave irradiation andenzyme catalysis in enantioselective resolution of RS-methyl mandelate. Journal of Chemical Technology and Biotechnology, 83, 145–1153. https://doi.org/10.1002/jctb.1975
  • Yan, J., Liu, S., Hu, J., Gui, X., Wang, G. ve Yan, Y. (2011). Enzymatic enrichment of polyunsaturated fatty acids using novel lipase preparations modified by combination of immobilization and fish oil treatment. Bioresource Technology, 102, 7154–7158. https://doi.org/10.1016/j.biortech.2011.04.065
  • Yuan, X., Liu, J., Zeng, G., Shi, J., Tong, J. ve Huang, G. (2008). Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology, Renewable Energy. 33, 1678–1684.
  • Zenevicz, M.P., Jacques, A., Furigo, A., Oliveira, J.V. ve Oliveira, D. (2016). Enzymatic hydrolysis of soybean and waste cooking oils under ultrasound system. Industrial Crops and Products, 80, 235–241. https://doi.org/10.1016/j.indcrop.2015.11.031
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Pastırmadaki potansiyel bakteriyosinojenik laktik asit bakterileri

Kübra FETTAHOĞLU, Mükerrem KAYA, Mehmet KARADAYI, Burak ALAYLAR, Aybike KAMILOĞLU, Ceyda IŞIK, Güzin KABAN, Medine GÜLLÜCE

Sualtı kablosuz optik haberleşme kanalının Monte Carlo tabanlı ışınım transfer denklemi ile modellenmesi

Kadir TÜRK, Cenk ALBAYRAK, Yiğit MAHMUTOĞLU

Tarihi Fil Köprüsü’nün yapısal ve dinamik özelliklerinin incelenmesi

Sıddık ŞENER, Muammer ÖZBEK

Editör olduğum yerde yayın yapmalı mıyım? Türkiye Üniversitelerince yayınlanan bazı akademik dergiler üzerine retrospektif bir çalışma

Celal KARAMAN, Volkan AKSOY

İkili parçacık sürü optimizasyonu ve destek vektör makinelerinin hibrit kullanımı ile ilaç keşfi için özellik seçimi

Ayça ÇAKMAK PEHLİVANLI, Nilay SUBAŞ

Görünür ışık haberleşme sistemleri için çoklu darbeli modülasyon tekniklerinin analizi

Mehmet SÖNMEZ

Kırmızı hevhulma (Lythrum salicaria l.) bitkisinin toplam fenolik bileşik tayini ile antioksidan ve antimikrobiyel aktivitelerinin belirlenmesi

Selin KALKAN, Mustafa Remzi OTAĞ, Mehmet Soner ENGİN

Grafen oksitin modifiye Hummers yöntemi ile sentezi ve film olarak Al/GO/n-InP diyot performansına etkileri

Fulya Esra CİMİLLİ ÇATIR

Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatiksel yöntemle optimizasyonu

Togayhan KUTLUK

Drosophila melanogaster’in farklı soylarında astaksantin’in in vivo kronik etkilerinin belirlenmesi

Handan UYSAL, Hatice ÇELİK