Sualtı kablosuz optik haberleşme kanalının Monte Carlo tabanlı ışınım transfer denklemi ile modellenmesi

Önemli askeri ve endüstriyel uygulama alanlarından dolayı, sualtı ortamında gerçek zamanlı ve yüksek hızlı bilgi iletişimi sağlayabilen sualtı kablosuz optik haberleşme (Underwater Wireless Optical Communication, UWOC) sistemlerine olan ilgi giderek artmaktadır. Güvenilir UWOC sistemlerinin tasarlanabilmesi için sualtı kablosuz optik haberleşme kanal karakteristiğinin gerçekçi ve doğru bir şekilde ortaya konulması önem arz etmektedir. Sualtı ortamının benzersiz optik özelliklerinden dolayı fazlasıyla karmaşık bir yapıya sahip olan UWOC kanalı, ışınım transfer denklemi (Radiative Transfer Equation, RTE) ile tamamen modellenebilmektedir. Fakat, RTE’nin kesin bir analitik çözümünü bulmak zordur. Bu çalışmada, RTE’nin yüksek doğrulukta çözümü ve UWOC kanal karakteristiğinin elde edilebilmesi için kullanılan Monte Carlo yaklaşımı ve işlem adımları detaylı olarak verilmiştir. Literatürde yaygın olarak kullanılan farklı su türleri için UWOC kanalının birim vuruş tepkileri elde edilmiş olup, kanal karakteristiklerinin yüksek doğruluğu ve hassasiyeti için yaklaşık modeller yerine literatürde kabul gören deneysel ölçümler dikkate alınmıştır. Elde edilen sonuçlara göre, UWOC sisteminin bilgi iletişim mesafeleri ele alınan su türleri için karşılaştırılmıştır.

Modeling of underwater wireless optical communication channel by Monte Carlo based radiative transfer equation

Due to the important military and industrial application areas, the interest in underwater wireless optical communication (UWOC) systems, which can support real-time and high-speed data communication in the underwater environment, gradually increases. In order to design reliable UWOC systems, it is important to reveal realistic and accurate underwater wireless optical communication channel characteristics. UWOC channel, which has a very complex structure due to the unique optical characteristics of the underwater environment, can be fully modeled by the radiative transfer equation (RTE). However, it is difficult to find an exact analytical solution of RTE. In this study, Monte Carlo approach and its operation steps are given in detail for the high accuracy solution of RTE and obtaining UWOC channel characteristic. For the different water types commonly used in the literature, the impulse responses of UWOC channel have been obtained and instead of approximate models experimental measurements recognized in the literature have been considered for the high accuracy and precision of the channel characteristics. According to the obtained results, data communication distances of the UWOC system are compared for the considered water types.

___

  • Cox, W.C. (2012), Simulation, Modeling, and Design of Underwater Optical Communication Systems. (Doktora Tezi), Department of Electrical Engineering, North Carolina State University, Raleigh, NC, USA.
  • Chen, H., Chen, X., Lu, J., Liu, X., Shi, J., Zheng, L., Liu, R., Zhou, X., ve Tian, P. (2020), Toward Long-Distance Underwater Wireless Optical Communication Based on A High-Sensitivity Single Photon Avalanche Diode. IEEE Photonics Journal, 12(3), 7902510.
  • Ding, H., Chen, G., Majumdar A.K., Sadler, B.M., ve Xu, Z. (2009), Modeling of Non-Line-of-Sight Ultraviolet Scattering Channels for Communication. IEEE Journal on Selected Areas in Communications, 27(9), 1535-1544.
  • Dong, F., Xu, L., Jiang, D., ve Zhang, T. (2017), Monte-Carlo-Based Impulse Response Modeling for Underwater Wireless Optical Communication. Progress in Electromagnetics Research M, 54, 137-144.
  • Gabriel, C., Khalighi, M.A., Bourennane, S., Leon, P., ve Rigaud, V. (2013), Monte-Carlo-Based Channel Characterization for Underwater Optical Communication Systems. IEEE/OSA Journal of Optical Communications and Networking, 5(1), 1-12.
  • Kaushal, H., ve Kaddoum, G. (2016), Underwater Optical Wireless Communication. IEEE Access, 4, 1518-1547.
  • Miramirkhani, F., ve Uysal, M. (2017), Visible Light Communication Channel Modeling for Underwater Environments with Blocking and Shadowing. IEEE Access, 6, 1082-1090.
  • Petzold, T.J. (1972), Volume Scattering Functions for Selected Ocean Waters. Scripps Inst. Oceanogr., La Jolla, CA, USA, Tech. Rep. SIO 72-78.
  • Prahl, S.A., Keijzer, M., Jacques, S.L., ve Welch, A.J. (1989), A Monte Carlo Model of Light Propagation in Tissue. Proc. of SPIE Dosimetry of Laser Radiation in Medicine and Biology, IS 5, 102-111.
  • Shihada, B., Amin, O., Bainbridge, C., Jardak, S., Alkhazragi, O., Ng, T.K., Ooi, B., Berumen, M., ve Alouini, M.-S. (2020), Aqua-Fi: Delivering Internet Underwater Using Wireless Optical Networks. IEEE Communications Magazine, 58(5), 84-89.
  • Tang, S., Dong, Y., ve Zhang, X. (2014), Impulse Response Modeling for Underwater Wireless Optical Communication Links. IEEE Transactions on Communications, 62(1), 226-234.
  • Yuan, R., Ma, J., Su, P., Dong, Y., ve Cheng, J. (2020), Monte-Carlo Integration Models for Multiple Scattering Based Optical Wireless Communication. IEEE Transactions on Communications, 68(1), 334-348.
  • Zeng, Z., Fu, S., Zhang, H., Dong, Y., ve Cheng, J. (2017), A Survey of Underwater Optical Wireless Communications. IEEE Communications Surveys & Tutorials, 19(1), 204-238.
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ