Elektrodepozisyon Yapılan ZnO İnce Filmlerinin Korozyon Davranışı

Elektrokimyasal büyütme metodu, homojen ince filmlerin oluşumunun mümkün olması, düşük maliyeti, nano-yapıların elde edilebilirliğinin kolaylığı, büyük yüzey alanlı büyütmelerin gerçekleştirilebilirliği ve stokiyometrideki kontrolü gibi avantajlara sahip olması nedeniyle yaygın bir şekilde kullanılmaktadır. Bu çalışmada, nano-yapılı çinko oksit (ZnO) ince filmler elektrokimyasal büyütme metodu kullanarak indiyum tin oksit (ITO) kaplı cam altlıklar üzerine büyütülmüştür. Filmlerin kalitesi üzerine katodik potansiyel, zaman, sıcaklık ve pH etkileri analiz edilmiştir. ZnO ince filmler dimetil sülfoksit’te (DMSO) 130 °C sıcaklıkta 3600 sn büyütme süresinde -1.0 V katodik potansiyelde elde edilmiştir. X-ışını kırınımı (XRD) analizi, ZnO ince filmlerin açıkça (0002) tercihi yöneliminde tek kristal özelliğe sahip olduğunu doğrulamaktadır. Soğurma ölçümlerine göre, ZnO filminin optik band aralığı (Eg) 3.4 eV olarak hesaplanmıştır. ITO altlık üzerine elektrodepozisyon yapılan ZnO ince filmlerin korozyon özellikleri elektrokimyasal empedans spektroskopisi (EIS) ve Tafel ölçümleriyle incelenmiştir. Nyquist, açık devre potansiyeli (OCV) ve Bode analizi ZnO’nun yapısal değişimini ve korozyon davranışını anlamak için oluştutulmuş ve Nyquist eğrisine fit yapılarak elde edilen çözelti direnci (Rs), polarizasyon direnci (Rp), sabit faz elementi (CPEdl) ve sabit faz elementi üstel değeri (n) sırasıyla 49.61 Ω, 4.97x10-6 Ω, 6.75x10-6 Ω-1.s.cm-2 ve 0.940 olarak hesaplanmıştır. Tafel eğrisine fit yapılarak elde edilen korozyon potansiyeli (Ekor) ve korozyon akımı (Ikor) sırasıyla -0.199 V ve 2.97x10-8 A olarak elde edilmiştir. Tüm ölçümler dikkate alındığında, büyük korozyon direncinin nedeninin büyütme sırasında oluşan kusurların artışına bağlı olarak yüzey pasivasyonuyla açıklanabilir.
Anahtar Kelimeler:

EIS, Elektrodepozisyon, Tafel, XRD, ZnO

Corrosion Behaviour Of Electrodeposited ZnO Thin Films

Electrochemical deposition method (ECD) has been widely used due to its advantages in stoichiometry control, large area growth, easy to form nano-structures, being low coast, possible formation of homogeneous thin films. In this study, nanostructured zinc oxide (ZnO) thin films were deposited on Indium tin oxide (ITO)-coated glass substrate using ECD. The effects of cathodic potential, time, temperature and pH on quality of the films were examined. ZnO thin films were achieved with in cathodic potential with -1.0 V and deposition time with 3600 seconds at temperature 130°C in dimethyl sulfoxide (DMSO). X-ray diffraction (XRD) analysis confirmed clearly that the ZnOthin films have sinle crystalline properties with a strong c-axis (0002) preferential orientation. According to the absorption measurements, the optical bandgap of the ZnOfilm was calculated as Eg 3.4 eV. ZnO thin films electrodeposited on ITO substrate were studied with Electrochemical Impedance Spectroscopy (EIS) and Tafel measurements. Nyquist, open circuit potential and Bode analysis were evaluated to find out the structural changing of ZnOand its corrosion behavior. With the help of these plots, solution resistance (Rs), polarization resistance (Rp), a constant phase element (CPE) and a CPE exponent (n) were calculated as 49.61 Ω, 4.97x106 Ω, 6.75x10-6 Ω-1.s.cm-2, 0.940, respectively. Also, we examined the ZnO thin films corrosion features with the help of tafel measurements. Considering all these measurement, the possible reason of increasing corrosion resistance can be interpreted as surface passivation depending on increasing defects caused by deposition. 

___

  • Asil, H., Gur, E., Cinar, K. & Coskun, C., 2009. Electrochemical Growth of n-ZnO onto the p-Type GaN Substrate: p-n Heterojunction Characteristics. Applied Physics Letters, 94.
  • Balakrishnan, A., Lee, B.C., Kim, T.N. & Pa, B.B., 2008. Corrosion Behaviour of Ultra Fine Grained Titanium in Simulated Body Fluid for Implant Application. Trends Biomaterials and Artificial Organs, 22, 58-64.
  • Çınar Demir, K., 2020. Corrosion Behavior of Electrodeposited Wo3 Thin Films. Ceramics International, 46, 4358-4364.
  • Dabbabi, S., Souli, M., Ben Nasr, T., Garcia-Loureiro, A. & Kamoun, N., 2019. Effects of Ni and La Dopants on the Properties of ZnO and SnO2 Thin Films: Microstructural, Optical and Impedance Spectroscopy Studies. Journal of Electronic Materials.
  • Dalvand, R., Mahmud, S. & Seeni, A., 2019. Chemical Sensing Performance of Flower-Like ZnO/PSi Nanostructures via Electrochemical Impedance Spectroscopy Technique. Journal of Electronic Materials, 48, 1604-1611.
  • Demir, K.C., Demir, E., Yuksel, S. & Coskun, C., 2019. Influence of Deposition Conditions on Nanostructured InSe Thin Films. Current Applied Physics, 19, 1404-1413.
  • Fahoume, M., Maghfoul, O., Aggour, M., Hartiti, B., Chraibi, F. & Ennaoui, A., 2006. Growth and Characterization of ZnO Thin Films Prepared by Electrodeposition Technique. Solar Energy Materials and Solar Cells, 90, 1437-1444.
  • Fay, S., Kroll, U., Bucher, C., Vallat-Sauvain, E. & Shah, A., 2005. Low Pressure Chemical Vapour Deposition of ZnO Layers forThin-Film Solar Cells: Temperature-Induced Morphological Changes. Solar Energy Materials and Solar Cells, 86, 385-397.
  • G-Berasategui, E., Bayon, R., Zubizarreta, C., Barriga, J., Barros, R., Martins, R. & Fortunato, E., 2015. Corrosion Resistance Analysis of Aluminium-Doped Zinc Oxide Layers Deposited by Pulsed Magnetron Sputtering. Thin Solid Films, 594, 256-260.
  • Gao, Y.F., Nagai, M., Masuda, Y., Sato, F. & Koumoto, K., 2006. Electrochemical Deposition of ZnO Film and Its Photoluminescence Properties. Journal of Crystal Growth, 286, 445-450.
  • Izaki, M., 1999. Preparation of Transparent and Conductive Zinc Oxide Films by Optimization of the Two-Step Electrolysis Technique. Journal of the Electrochemical Society, 146, 4517-4521.
  • Kouhestanian, E., Mozaffari, S.A., Ranjbar, M., SalarAmoli, H. & Armanmehr, M.H., 2016. Electrodeposited ZnO Thin Film as an Efficient Alternative Blocking Layer for TiCl4 Pre-Treatment in TiO2-Based Dye Sensitized Solar Cells. Superlattices and Microstructures, 96, 82-94.
  • Maleki-Ghaleh, H., Shahzadeh, M., Hoseinizadeh, S.A., Arabi, A., Aghaie, E. & Siadati, M.H., 2016. Evaluation of the Photo-Electro-Catalytic Behavior of Nano-Structured ZnO Films Fabricated by Electrodeposition Process. Materials Letters, 169, 140-143.
  • Pan, Z.Z., Sun, F.Q., Zhu, X.M., Chen, Z.C., Lin, X., Zheng, Y.J., Zhong, W.Y., Zhuang, Z.F. & Gu, F.L., 2019. Electrodeposition-Based in Situ Construction of a ZnO-Ordered Macroporous Film Gas Sensor with Enhanced Sensitivity. Journal of Materials Chemistry A, 7, 1287-1299.
  • Pei, L.N., Zhang, B.X., Luo, H., Wu, X.C., Li, G.Q., Sheng, H.C. & Zhang, L.L., 2019. Electrodeposition of ZnO Nanoprism-Zn Substituted Hydroxyapatite Duplex Layer Coating for Carbon Fiber. Ceramics International, 45, 14278-14286.
  • Pellegrino, D., Franzo, G., Strano, V., Mirabella, S. & Bruno, E., 2019. Improved Synthesis of ZnO Nanowalls: Effects of Chemical Bath Deposition Time and Annealing Temperature. Chemosensors, 7.
  • Przezdziecka, E., Paradowska, K.M., Lisowski, W., Wierzbicka, A., Jakiela, R., Zielony, E., Gumienny, Z., Placzek-Popko, E. & Kozanecki, A., 2019. ZnO:Sb MBE layers with Different Sb Content-Optical, Electronic and Structural Analysis. Journal of Alloys and Compounds, 797, 1163-1172.
  • Ralston, K.D. & Birbilis, N., 2010. Effect of Grain Size on Corrosion: A Review. Corrosion, 66.
  • Sharma, V., Prasad, M., Ilaiyaraja, P., Sudakar, C. & Jadkar, S., 2019. Electrodeposition of Highly Porous ZnO Nanostructures with Hydrothermal Amination for Efficient Photoelectrochemical Activity. International Journal of Hydrogen Energy, 44, 11459-11471.
  • Taleb, S., Dokhan, N., Zazi, N. & Chopart, J.P., 2019. Perpendicular Weak Permanent Magnetic Field Effect on the Electrodeposited Nanostructured ZnO Film and Its Kinetic Corrosion Behavior. Protection of Metals and Physical Chemistry of Surfaces, 55, 781-788.
  • Tekmen, S., Gur, E., Asil, H., Cinar, K., Coskun, C. & Tuzemen, S., 2010. Structural, Optical, and Electrical Properties of n-ZnO/p-GaAs Heterojunction. Physica Status Solidi a-Applications and Materials Science, 207, 1464-1467.
  • Tharsika, T., Thanihaichelvan, M., Haseeb, A.S.M.A. & Akbar, S.A., 2019. Highly Sensitive and Selective Ethanol Sensor Based on ZnO Nanorod on SnO2 Thin Film Fabricated by Spray Pyrolysis. Frontiers in Materials, 6.
  • Vazquez, G. & Gonzalez, I., 2007. Diffusivity of Anion Vacancies in WO3 Passive Films. Electrochimica Acta, 52, 6771-6777.
  • Wang, C., Wang, L.J., Zhang, L., Xi, R., Huang, H., Zhang, S.H. & Pan, G.B., 2019. Electrodeposition of ZnO Nanorods onto GaN Towards Enhanced H2S Sensing. Journal of Alloys and Compounds, 790, 363-369.
  • Weng, J., Zhang, Y.J., Han, G.Q., Zhang, Y., Xu, L., Xu, J., Huang, X.F. & Chen, K.J., 2005. Electrochemical Deposition and Characterization of Wide Band Semiconductor ZnO Thin Film. Thin Solid Films, 478, 25-29.
  • Wittkamper, F., Bikowski, A., Ellmer, K., Gartner, K. & Wendler, E., 2019. Energy-Dependent RBS Channelling Analysis of Epitaxial ZnO Layers Grown on ZnO by RF-Magnetron Sputtering. Crystals, 9.
  • Xie, J., Imanishi, N., Hirano, A., Takeda, Y., Yamamoto, O., Zhao, X.B. & Cao, G.S., 2011. Determination of Li-Ion Diffusion Coefficient in Amorphous Zn and ZnO Thin Films Prepared by Radio Frequency Magnetron Sputtering. Thin Solid Films, 519, 3373-3377.
  • Yilmaz, M., Demir, K.C., Turgut, G. & Aydogan, S., 2019. Electrochemical Impedance Spectroscopy Analysis of ZnO Films: the Effect of Mg Doping. Philosophical Magazine Letters, 99, 243-252.
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ