Anatomi eğitimi için temporomandibular eklemin sanal anatomisi

            Temporomandibular eklem, baş bölgesinde tek oynar eklemdir. Bu eklem, özellikle çiğneme hareketleri sırasında oldukça kuvvetli basınca maruz kalır. Bu ekleme yönelik rahatsızlıklar oldukça sık görülür ve şiddetli ağrı ile seyrederler. Bu çalışmanın temel amacı, hologramik görüntülerin anatomi eğitimi ve klinik uygulamalar için güvenilirliğini ortaya koymaktır. Çalışmamızın bir diğer amacı ise, anatomi eğitimi sırasında hologramik görüntülerin kullanılmasının tıp öğrencileri üzerine olan etkisini araştırmaktır. Çalışmamızda, bu eklemin 3 boyutlu detaylı anatomik yapısını ortaya koymak için, 140 bireye ait (72 kadın, 68 erkek) bilgisayarlı tomografi görüntüleri kullanıldı. Bu bilgisayarlı tomografi görüntüleri, Osirix-Lite programı kullanılarak, hologramik görüntüler için uygun formatta yeniden yapılandırıldı. Dışa aktarılan bu görüntüler, önce Blender yazılımına aktarılarak uygun vertex düzeltmeleri yapıldı ve daha sonra son düzeltmelerin tamamlanması için Meshmixer yazılımına aktarıldı. Görüntülerin yeniden modellenmesi işlemi tamamlandıktan sora, Osirix-Lite yazılımı ile tomografi görüntülerinden ve Meshlab yazılımı ile de hologramik görüntülerden morfometrik ölçümler tamamlandı. Elde edilen verilerin karşılaştırılması için SPSS v23 yazılımı kullanıldı. Ayrıca, anatomi eğitiminde hologramik görüntülerin kullanılması hakkında tıp öğrencilerinin görüşleri alındı. Sağlık bilimleri alanında, yeniden modellenmiş hologramik görüntülerin kullanılması, öğrencilerin tıp eğitimi sırasında ve meslek hayatları ve hastaların hayat operasyon sonrası yaşantıları için oldukça etkili ve güvenilir bir yöntemdir.

The virtual anatomy of the temporomandibular joint for anatomy education

Temporomandibular joint is the only synovial joint in head region. The joint is exposed to very strong pressure, especially during the chewing movements. Disorders of the joint are quite common and occurred with severe pain. The main aim of this study was to authorize the reliability of the hologram images for the anatomy and clinic applications. The second purpose of presented study was to evaluate effects of using hologramic images on medical students during anatomy education. We evaluated 140 healthy individuals’ (72 women, 68 men) computed tomography images to describe detailed three-dimensional anatomical organization of this joint. These image series were exported in corresponding format to be reconstructed as hologram using Osiris-Lite software. These exported images imported into the Blender software for vertex correction and then imported into the Meshmixer software for final corrections. The morphometric parameters of the joint were evaluated using Meshlab software for hologramic images. The paired t-test on the SPSS 23 program was used to compare the data. Feedbacks for using hologramik images during anatomy education were obtained from the medical students. Using reconstructed hologram images in the medical sciences is very effective and reliable for students, physicians and patients in their educational, professional and post-operative lives.

___

  • Ammanuel, S., I. Brown, J. Uribe, and B. Rehani. 2019. 'Creating 3D models from Radiologic Images for Virtual Reality Medical Education Modules', Journal of Medical Systems, 43: 166.
  • Andrews, C., M. K. Southworth, J. N. A. Silva, and J. R. Silva. 2019. 'Extended Reality in Medical Practice', Curr Treat Options Cardiovasc Med, 21: 18.
  • Bodani, V. P., G. E. Breimer, F. A. Haji, T. Looi, and J. M. Drake. 2019. 'Development and evaluation of a patient-specific surgical simulator for endoscopic colloid cyst resection', Journal of Neurosurgery: 1-9.
  • de Faria, J. W. V., M. J. Teixeira, L. D. Sousa, J. P. Otoch, and E. G. Figueiredo. 2016. 'Virtual and stereoscopic anatomy: when virtual reality meets medical education', Journal of Neurosurgery, 125: 1105-11.
  • Dharmawardana, N., G. Ruthenbeck, C. Woods, B. Elmiyeh, L. Diment, E. H. Ooi, K. Reynolds, and A. S. Carney. 2015. 'Validation of virtual-reality-based simulations for endoscopic sinus surgery', Clinical Otolaryngology, 40: 569-79.
  • Frederiksen, J. G., S. M. D. Sorensen, L. Konge, M. B. S. Svendsen, M. Nobel-Jorgensen, F. Bjerrum, and S. A. W. Andersen. 2019. 'Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial', Surg Endosc.
  • Hoffman, H., and D. Vu. 1997. 'Virtual reality: teaching tool of the twenty-first century?', Acad Med, 72: 1076-81.
  • Huang, C. W., H. Cheng, Y. Bureau, S. K. Agrawal, and H. M. Ladak. 2015. 'Face and content validity of a virtual-reality simulator for myringotomy with tube placement', Journal of Otolaryngology-Head & Neck Surgery, 44.
  • Izard, S. G., J. A. J. Mendez, and P. R. Palomera. 2017. 'Virtual Reality Educational Tool for Human Anatomy', Journal of Medical Systems, 41.
  • Latorre, R., D. Bainbridge, A. Tavernor, and O. L. Albors. 2016. 'Plastination in Anatomy Learning: An Experience at Cambridge University', Journal of Veterinary Medical Education, 43: 226-34.
  • McMenamin, P. G., J. McLachlan, A. Wilson, J. M. McBride, J. Pickering, D. J. R. Evans, and A. Winkelmann. 2018. 'Do we really need cadavers anymore to learn anatomy in undergraduate medicine?', Medical Teacher, 40: 1020-29.
  • Oliveira, L. M., and E. G. Figueiredo. 2019. 'Simulation Training Methods in Neurological Surgery', Asian J Neurosurg, 14: 364-70.
  • Olofsson, J., M. Rydmark, C. H. Berthold, J. Gothlin, T. Kling-Petersen, F. Mork-Petersen, and R. Pascher. 1998. 'Advanced 3D-visualization, including virtual reality, distributed by PCs, in brain research, clinical radiology and education', Stud Health Technol Inform, 50: 357-8.
  • Ramlogan, R., A. U. Niazi, R. Y. Jin, J. Johnson, V. W. Chan, and A. Perlas. 2017. 'A Virtual Reality Simulation Model of Spinal Ultrasound Role in Teaching Spinal Sonoanatomy', Regional Anesthesia and Pain Medicine, 42: 217-22.
  • Rooney, M. K., F. Zhu, E. F. Gillespie, J. R. Gunther, R. P. McKillip, M. Lineberry, A. Tekian, and D. W. Golden. 2018. 'Simulation as More Than a Treatment-Planning Tool: A Systematic Review of the Literature on Radiation Oncology Simulation-Based Medical Education', International Journal of Radiation Oncology Biology Physics, 102: 257-83.
  • Satava, R. M. 1993. 'Virtual reality surgical simulator. The first steps', Surg Endosc, 7: 203-5.
  • Satava, R. M. 1994. 'Emerging medical applications of virtual reality: a surgeon's perspective', Artif Intell Med, 6: 281-8.
  • Satava, R. M. 1995. 'Virtual reality, telesurgery, and the new world order of medicine', J Image Guid Surg, 1: 12-6.
  • Taffinder, N., C. Sutton, R. J. Fishwick, I. C. McManus, and A. Darzi. 1998. 'Validation of virtual reality to teach and assess psychomotor skills in laparoscopic surgery: Results from randomised controlled studies using the MIST VR laparoscopic simulator', Medicine Meets Virtual Reality, 50: 124-30.
  • Thompson, A. R., and A. M. Marshall. 2019. 'Participation in Dissection Affects Student Performance on Gross Anatomy Practical and Written Examinations: Results of a Four-Year Comparative Study', Anat Sci Educ.
  • Trelease, R. B. 1996. 'Toward virtual anatomy: a stereoscopic 3-D interactive multimedia computer program for cranial osteology', Clin Anat, 9: 269-72.