Maket yapımı esnasında mimarlık stüdyolarının iç mekân hava kalitesinin ve kullanıcı memnuniyetinin belirlenmesi

Bu çalışmada, mimarlık eğitiminin verildiği stüdyolarda öğrencilerin maket yapımı sırasında iç hava kalitesi ve ısıl konforu üzerine ölçümler yapılmış, ASHRAE standardına göre değerlendirilmiş ve elde edilen düşük iç hava kalitesinin öğrencilerin sağlığını etkileyebilecek düzeyde etkisinin olup olmadığı anket yöntemi ile belirlenmiştir. Yapılan ölçümler sonucunda, stüdyo büyüklüğünün iç mekân hava kalitesinin uzun süre korunmasında büyük oranda etkili olduğu, maket yapımı sırasında doğal havalandırmanın kesintisiz devam etmesine rağmen stüdyolarda iç mekân kirleticilerinin öğrencilerin sağlığını tehdit edecek değerlere ulaştığı tespit edilmiştir. Ayrıca kız öğrencilerin erkek öğrencilere göre iç mekân kalitesinin düşük olmasından daha fazla rahatsız oldukları belirlenmiştir.

Determination of the indoor air quality and occupancy satisfaction in architecture studios during model making process

In this study, measurements were performed to determine the indoor air quality and thermal comfort, evaluated to ASHRAE standard during the model making process of the students in the studios where architectural education was given, and whether the low indoor air quality obtained had an effect on the health of the students was determined by the survey method. As a result of the measurements, it was determined that the size of the studio space was largely effective in maintaining the indoor air quality for a long time, and although the natural ventilation continued uninterrupted during the model making, the indoor quality in the studios reached the values that would threaten the health of the students. In addition, it was determined that female students were more disturbed by the low indoor quality than male students.

___

  • Annesi-Maesano, I., Baiz, N., Banerjee, S., Rudnai, P., Rive, S., Sinphonie Group (2013). Indoor air quality and sources in schools and related health effects. Journal of Toxicology and Environmental Health, Part B 16(8), 491-550. DOI: 10.1080/10937404.2013.853609
  • ASHRAE, 55 (2017). Thermal Environmental Conditions for Human Occupancy, in Atlanta, Georgia: American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. http://arco-hvac.ir/wpcontent/uploads/2015/11/ASHRAE_Thermal_Comfort_Standard.pdf
  • Bakó-Biró, Z., Clements-Croome, D.J., Kochhar, N., Awbi, H.B., Williams, M.J. (2012) Ventilation rates in schools and pupils’ performance. Building and Environment, 48, 215-223. DOI: 10.1016/j.buildenv.2011.08.018
  • Bogdanovica, S., Zemitis, J., Bogdanovics, R. (2020). The effect of CO2 concentration on children’s well-being during the process of learning. Energies, 13(22), 6099. DOI: 10.3390/en13226099
  • Bostancı Başkan, T., Sözen Şerefhanoğlu, M. (2006). Dersliklerde görsel konfor ve etkin enerji kullanımı-bir örnek derslik aydınlatması. (Turkish) “Visual Comfort and Efficient Energy Use in Classrooms Lighting – A Field Study of Classrooms Lighting” Megaron, 1.2(3), 143-153. https://app.trdizin.gov.tr/dokumangoruntule?ext=pdf&path=CrnWZGRsXTjRjLjWxD978OSUAL2jXitizhVYmCxNvH55i17y72f60ZdhXjBfHwGff91V2nVIO9jllq5Memy8R3RGJC63zqAxfVCzSBtW2agDunfm5aaAY1p6m0CVVlWiF7B8ZZMVtrNgA78MadUDugISy7hYTgyfPbe5DZ5MUD9l7n2uogm3ZhccaBI33TlznZ1VO
  • Destaillats, H., Maddalena, R.L., Singer, B.C., Hodgson, A.T., McKone, T.E. (2008). Indoor pollutants emitted by office equipment: A review of reported data and information needs. Atmospheric Environment, 42(7), 1371-1388. DOI: 10.1016/j.atmosenv.2007.10.080
  • Djabarouti, J, O’Flaherty, C. (2019) Experiential learning with building craft in the architectural design studio: A pilot study exploring its implications for built heritage in the UK. Thinking Skills and Creativity, 32, 102-113. DOI: 10.1016/j.tsc.2019.05.003
  • Düzenli, T., Yilmaz, S., Alpak, E. M. (2017). The effects of model making on design and learning in landscape architecture education. Eurasian Journal of Educational Research, 17(70), 121-134. DOI: 10.14689/EJER.2017.70.7
  • Fernández-Agüera, J., Campano, M.Á., Domínguez-Amarillo, S., Acosta, I., Sendra, J.J. (2019). CO2 Concentration and occupants’ symptoms in naturally ventilated schools in Mediterranean climate. Buildings, 9(9), 197. DOI: doi.org/10.3390/buildings9090197
  • Franco, A., Leccese, F., Marchi, L. (2019). Occupancy modelling of buildings based on CO2 concentration measurements: an experimental analysis. In: Journal of Physics: Conference Series, 1224(1), 012016. DOI: 10.20944/PREPRINTS201907.0136.V1 Fsadni, P., Montefort, S. (2013). School indoor air quality and allergen exposure. Malta Medical Journal, 25(3). http: 2013.Vol25.Issue3.A2.pdf
  • Gao, M.P., Deng, Z.Y., Nie, L., Shao, X., An, X.S. (2018). Content levels and compositions characteristics of volatile organic compounds (vocs) emission from architectural coatings based on actual measurement. Huan jing ke xue= Huanjing kexue, 39(10), 4414-4421. DOI: 10.13227/j.hjkx.201712038
  • Gao, J., Wargocki, P., Wang, Y. (2014). Ventilation system type, classroom environmental quality and pupils' perceptions and symptoms. Building and Environment, 75, 46-57.
  • Gilliland, F.D., Berhane, K., Rappaport, E.B., Thomas, D.C., Avol, E., Gauderman, W.J., London, S.J., Margolis, H.G., McConnell, R., Islam, K.T., Peters, J.M. (2001). The effects of ambient air pollution on school absenteeism due to respiratory illnesses. Epidemiology, 12(1), 43-54. DOI: 10.1097/00001648-200101000-00009
  • Guo, H., Cheng, T., Gu, X., Wang, Y., Chen, H., Bao, F., Shi, S., Xu, B., Wang, W., Zuo, X., Zhang, X., Meng, C. (2017). Assessment of PM2. 5 concentrations and exposure throughout China using ground observations. Science of the Total Environment, 601, 1024-1030. DOI: 10.1016/j.scitotenv.2017.05.263
  • Jovanovi´c, M., Vuˇci´cevi´c, B., Turanjanin, V., Živkovi´c, M., Spasojevi´c, V. (2014). Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia. Energy, 77, 42–48. DOI: 10.1016/j.energy.2014.03.080
  • Kuśtrowski, P., Rokicińska, A., Kondratowicz, T. (2018). Abatement of volatile organic compounds emission as a target for various human activities including energy production. Advances in Inorganic Chemistry, 72, 385-419. DOI: 10.1016/bs.adioch.2018.05.004
  • Liang, X., Sun, X., Lu, Q., Ren, L., Liu, M., Su, Y., Wang, S., Lu, H., Goa, B., Zhao, W., Sun, J., Gao, Z., Chen, L. (2021). VOC emission inventory of architectural coatings and adhesives for new buildings in China based on investigated and measured data. Atmospheric Environment, 245, 118014. DOI: 10.1016/j.atmosenv.2020.118014
  • Lu, C.Y., Lin, J.M., Chen, Y.Y., Chen, Y.C. (2015). Building-related symptoms among office employees associated with indoor carbon dioxide and total volatile organic compounds. International Journal of Environmental Research and Public Health, 12(6), 5833-5845. DOI: 10.3390/ijerph120605833
  • Madureira, J., Paciência, I., Rufo, J., Ramos, E., Barros, H., Teixeira, J.P., de Oliveira Fernandes, E. (2015). Indoor air quality in schools and its relationship with children's respiratory symptoms. Atmospheric Environment, 118, 145-156. DOI: 10.1016/j.atmosenv.2015.07.028
  • Mendell, M.J., Heath, G.A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air, 15(1), 27-52. DOI: 10.1111/j.1600-0668.2004.00320.x
  • MGM, (2016). Turkey. https://www.mgm.gov.tr/FILES/iklim/iklim_siniflandirmalari/koppen.pdf
  • Mishra, N., Bartsch, J., Ayoko, G.A., Salthammer, T., Morawska, L. (2015). Volatile organic compounds: characteristics, distribution and sources in urban schools. Atmospheric Environment, 106, 485-491. DOI: 10.1016/j.atmosenv.2014.10.052
  • Musa, A.R., Abdullah, N.A.G., Che-Ani, A.I., Tawil, N.M., Tahir, M.M. (2012). Indoor environmental quality for UKM architecture studio: An analysis on lighting performance. Procedia-Social and Behavioral Sciences, 60, 318-324.(a) DOI: 10.1016/j.sbspro.2012.09.386
  • Musa, A.R., Abdullah, N.A.G., Che-Ani, A.I., Tawil, N.M., Tahir, M.M. (2012). Temperature analysis for indoor environmental quality (IEQ) of UKM architecture studio. Procedia-Social and Behavioral Sciences, 60, 575-581. (b) DOI: 10.1016/j.sbspro.2012.09.425
  • Mohai, P., Kweon, B.S., Lee, S., Ard, K. (2011). Air pollution around schools is linked to poorer student health and academic performance. Health Affairs, 30(5), 852-862. DOI: 10.1377/hlthaff.2011.0077
  • Myhrvold, A.N., Olsen, E., Lauridsen, O. (1996). Indoor environment in schools–pupils health and performance in regard to CO2 concentrations. Indoor Air, 96(4), 369–371. http://www.aretas.ca/sites/default/files/imce_images/Indoor%20Environment%20in%20Schools%20%E2%80%93%20Pupils%20Health%20%26%20Performance%20in%20Regard%20to%20CO2%20Concentrations.pdf
  • Nasir, A.R.M., Musa, A.R., Che-Ani, A.I., Utaberta, N., Abdullah, N.A.G., Tawil, N.M. (2011). Identification of indoor environmental quality (IEQ) parameter in creating conducive learning environment for architecture studio. Procedia Engineering, 20, 354-362. DOI: 10.1016/j.proeng.2011.11.177_PmLomHKjVxQ0kaypacw9A2i_rCQJrw2-mg=&contentType=application/pdf
  • Niu, J.L., Burnett, J. (2001). Setting up the criteria and credit-awarding scheme for building interior material selection to achieve better indoor air quality. Environment İnternational, 26(7-8), 573-580. DOI: 10.1016/S0160-4120(01)00043-5
  • Özkan, S.T.E., Hadia, H.A. (2015). The ımpacts of model-making on learning environment: (learning-by-doing), conference: high professional ınstitute for comprehensive professions. Alkhums Researches of the 5th Scientifice Conference At: Libya. https://www.researchgate.net/profile/HatemHadia/publication/329352009_The_Impacts_of_Modelmaking_on_Learning_Environment_Learning-byDoing/links/5c02e77f92851c63cab329c0/The-Impacts-of-Model-making-on-Learning-Environment-Learning-by-Doing.pdf
  • Pegas, P.N., Alves, C.A., Evtyugina, M.G., Nunes, T., Cerqueira, M., Franchi, M., Pio, C.A., Almeida, S.M., Freitas, M.C. (2011). Indoor air quality in elementary schools of Lisbon in spring. Environmental Geochemistry and Health, 33(5), 455-468. DOI: 10.1007/s10653-010-9345-3
  • Persily, A.K. (1997) Evaluating building IAQ and ventilation with indoor carbon dioxide (No. CONF-970668-). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (United States).
  • Raysoni, A.U., Stock, T.H., Sarnat, J.A., Chavez, M.C., Sarnat, S.E., Montoya, T., Holguin, F., Li, W.W. (2017). Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools. Environmental Pollution, 231, 681-693. DOI: 10.1016/j.envpol.2017.08.065
  • Sakellaris, I., Saraga, D., Mandin, C., de Kluizenaar, Y., Fossati, S., Spinazzè, A., Cattaneo, A., Mihucz, V., Szigeti, T., de Oliveira Fernandes, E., Kalimeri, K., Mabilia, R., Carrer, P., Bartzis, J. (2020). Association of subjective health symptoms with indoor air quality in European office buildings: The OFFICAIR project. Indoor Air, 31(2), 426-439. DOI: 10.1111/ina.12749
  • Satish, U., Mendell, M.J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., Fisk, W.J. (2012). Is CO2 an indoor pollutant? Direct effects of Low-to-Moderate CO2 concentrations on human decision-making performance. Environment Health Perspectives, 120, 1671–1678. DOI: 10.1289/ehp.1104789
  • Shendell, D.G., Prill, R., Fisk, W.J., Apte, M.G., Blake, D., Faulkner, D. (2004). Associations between classroom CO2 concentrations and student attendance in Washington and in Idahao. Indoor Air, 14(5) 333-341. DOI: 10.1111/j.1600-0668.2004.00251.x
  • Simanic, B., Nordquist, B., Bagge, H., Johansson, D. (2019). Indoor air temperatures, CO2 concentrations and ventilation rates: Long-term measurements in newly built low-energy schools in Sweden. Journal of Building Engineering, 25, 100827. DOI: 10.1016/j.jobe.2019.100827
  • Stabile, L., Dell’Isola, M., Russi, A., Massimo, A., Buonanno, G. (2017). The effect of natural ventilation strategy on indoor air quality in schools. Science of Total Environment, 595, 894–902. DOI: 10.1016/j.scitotenv.2017.03.048
  • Turanjanin, V., Vučićević, B., Jovanović, M., Mirkov, N., Lazović, I. (2014). Indoor CO2 measurements in Serbian schools and ventilation rate calculation. Energy, 77, 290-296. DOI: 10.1016/j.energy.2014.10.028
  • Wargocki, P., Wyon, D.P. (2013). Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment, 59, 581-589. DOI: 10.1016/j.buildenv.2012.10.007
  • Wargocki, P., Wyon, D.P. (2017). Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Building and Environment, 112, 359-366. DOI: 10.1016/j.buildenv.2016.11.020
  • World Health Organization Health and environment in Europe: progress assessment (No. EUR/55934/BD/1). Copenhagen: WHO Regional Office for Europe 2010. https://www.euro.who.int/__data/assets/pdf_file/0010/96463/E93556.pdf
  • Zhang, G., Spickett, J., Rumchev, K., Lee, A.H., Stick, S. (2006). Indoor environmental quality in a 'low allergen' school and three standard primary schools in Western Australia. Indoor Air, 16(1), 74-80. DOI: 10.1111/j.1600-0668.2005.00405.x
  • Zhang, Y., Sun, Y., Du, W., Wang, Q., Chen, C., Han, T., Lin, J., Zhao, J., Xu, W., Gao, J., Li, J., Fu, P., Wang, Z., Han, Y. (2016). Response of aerosol composition to different emission scenarios in Beijing, China. Science of the Total Environment, 571, 902-908. DOI: 10.1016/j.scitotenv.2016.07.073