Galilean Düzleminde Elastik Eğriler

1692'de Jacques Bernoulli tarafından ortaya atılan bir elastik eğri veya elastika , verilen birinci dereceden sınır koşullarını sağlayan sabit uzunluktaki eğriler için toplam kare eğriliğinin integralini minimize eden varyasyon probleminin çözümüdür. Hayatımızda mühendislik, bilgisayar bilimi, biyoloji, kimya, gemi inşa , köprü inşa, DNA vb. birçok alanda büyük rol oynayan elastik problemiyle ilgili birçok çalışma, Öklid ve Öklid dışı uzaylarda birçok araştırmacı tarafından yapılmıştır. Biz bu çalışmada Galile düzleminde klasik varyasyon problemini ele alıyoruz ve ikinci mertebeden bir diferansiyel denklem olarak Euler-Lagrange denklemini elde ederek böyle bir düzlemde yay uzunluğu ile parametrelenen elastik eğrilerin genel yapısını belirliyoruz. Daha sonra, Galilean düzleminde bir elastik eğri örneği veriyoruz.

Elastic Curves in the Galilean plane

An elastic curve or elastica introduced by Jacques Bernoulli in 1692 is the solution of a variational problem which minimizes the integral of the total squared curvature for curves of a fixed length satisfying given first order boundary conditions. Many works related to elastica problem, which plays a large role from bridges to DNA in our life have been done by many researchers in Euclidean and non-Euclidean spaces. In this work, we consider the classical variational problem in the Galilean plane. We derive Euler-Lagrange equation as a second order differential equation. Then, we classify the elastic curves parameterized by arc length in such a plane. Next, we give an example which represents the position vector of an elastic curve in explicit form in the Galilean plane

___

  • Referans 1 Brunnet G., A New Characterization of Plane Elástica, Mathematical Methods in Computer Aided Geometric Design II, 1992; 43-56.
  • Referans2 Djondjorov P.A., Hadzhilazova M.TS., Mladenov I.M., Explicit Parameterization of Euler’s Elastica, Ninth International Conference on Geometry, Integrability and Quantization, Bulgaria, 2008; 175-186.
  • Referans3 Gürses N., Yüce S., One-Parameter Planar Motions in Affine Cayley-Klein Planes, European Journal of Pure and Applied Mathematics 2014; Vol. 7, No. 3, 335-342.
  • Referans4 Kwon, D.Y., Park, F. C., Evolution of Inelastic Plane Curves, Appl. Math. Lett.,1999; 12, 115-119.
  • Referans5 Langer J., Singer D.A. The Total Squared Curvature of Closed Curves, Journal of Differential Geometry, 1984; 20, 1-22.
  • Referans 6 Levien R., The elastica: a mathematical history, The elastica: a mathematical history | EECS at UC Berkeley, 2008.
  • Referans 7 Singer, D., Lectures on Elastic Curves and Rods, AIP Conf. Proc. 1002, Amer. Inst. Phys., Melville. New York, 2008.
  • Referans 8 Tükel G.Ö., Turhan T., Elastica in Galilean 3-Space, Konuralp Journal of Mathematics, 2020; 8(2), 419-422.
  • Referans 9 Yaglom I.M, A Simple non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
  • Referans10 Yüzbaşı Z.K., On Characterizations of Curves in the Galilean Plane, Palestine Journal of Mathematics, 2021; Vol. 10(1), 308–311.
  • Referans 11 Oldfather W.A., Ellis C.A., Brown D.M., Leonhard Euler's Elastic Curves, Isis, 1933; Vol. 20, No. 1, pp. 72-160.