ENVIRONMENTAL ASPECTS OF OFFSHORE ACTIVITIES IN ARCTIC

Dünya çapında artmakta olan enerji talebi, dünyanın ilgisini nispeten daha az keşfedilmiş ve zengin hidrokarbon kaynaklarına sahip Arktik bölgesine çekmiştir. Bu çalışmada, Arktik bölgesinde yürütülen açık deniz faaliyetlerinin, güncel durumu, karşılaşılan zorluklar ve olası çevresel etkileri değerlendirilmiştir. Arktik iklim ve çalışma şartları açısından zorlu bir coğrafya olup bu bölgede açık deniz faaliyetleri icra edilirken buzlanma, yüksek maliyetli operasyonel gereksinimler ve entegre esnasında zorluklar ile karşılaşılabilmektedir. Bunun yanında faaliyetler esnasında petrol sızıntısı, su altı patlaması, atmosfere yüksek sera gazı salınımı, atık su deşarjları gibi önemli yan etkiler ortaya çıkmaktadır. Alınabilecek tedbirler kapsamında yeni ve çevre dostu teknolojilerin kullanımı, yerinde yakma, sıfır deşarj politikası, faaliyet öncesinde tüm olasılıkların değerlendirilebileceği hazırlık ve planlama faaliyetleri gerçekleştirilebilir. Arktik’in gelecek dönemlerde açık deniz faaliyetlerine daha fazla ev sahipliği yapacağı, bu maksatla çevresel etkilerin ve alınabilecek önlemlerin daha detaylı incelenmesi gerekli olduğu değerlendirilmektedir.

___

  • [1] Ilicak, M., Drange, H., Wang, Q., Gerdes, R., Aksenov, Y., Bailey, ... Yeager, S.G. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 2016; 100: 141-161. https://doi.org/10.1016/j.ocemod.2016.02.004
  • [2] European Commission, Joint Research Centre, Flitris, E., Rossotti, A., Tarantola, S., Safety aspects of offshore oil and gas operations in arctic and sub-arctic waters. Publications Office, 2019, https://data.europa.eu/doi/10.2760/866261
  • [3] Freitag, D.R., McFadden, T.T. Introduction to Cold Regions Engineering. ASCE Publications, p. 2, 110. Gorynin, V., Malushevskiy, P., 2007. Creating and introducing of new materials. Morskoy Vestnik, 1997; 3 (6): 74-77.
  • [4] Khare, N. and Khare, R. Environmental risk from exploitation of the Arctic. The Arctic, 2021.
  • [5] Camus L., Brooks S., Geraudie P., Hjorth M., Nahrgang J., Olsen G.H., Smit M.G.D. Comparison of produced water toxicity to Arctic and temperate species. Ecotoxicology and Environmental Safety, 2015; 113: 248–258.
  • [6] Yan J.B., Liu X.M., Liew J.Y.R., Qian X., Zhang M.H. Steel–concrete–steel sandwich system in Arctic offshore structure: Materials, experiments, and design. Materials and Design, 2016; 91: 111-121. https://doi.org/10.1016/J.MATDES.2015.11.084.
  • [7] Gudmestad, O., Løset, S., Alhimenko, A., Shkhinek, K., Tørum, A., Jensen, A. Engineering aspects related to Arctic offshore developments. St. Petersburg, 2007.
  • [8] Bird, K.J., Charpentier, R.R., Gautier, D.L., Houseknecht, D.W., Klett, T.R., Pitman, J.K., Moore, T.E., Schenk, C.J., Tennyson, M.E., Wandrey, C.J. Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle. USGS Fact Sheet 2008-3049. https://doi.org/USGS Fact Sheet, 2008; 2008-3049.
  • [9] USGS. Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle. Fact Sheet 2008–3049, 2008.
  • [10] Harsem Ø. and Knut Heen A.E. Factors influencing future oil and gas prospects in the Arctic, 2011; 39: 8037-8045.
  • [11] Brownfield, M.E., et al., 2012. An Estimate of Undiscovered Conventional Oil and Gas Resources of the World, U.S. Geological Survey, USGS Fact Sheet 2012–3042.
  • [12] Bucelli, M., Paltrinieri, N. Landucci, G. Cozzani, V. Safety barrier management and risk assessment: integration for safer operations in the Oil & Gas industry. Institution of Chemical Engineers Symposium Series, 2017-May (162).
  • [13] Ilinova A. and Chanysheva A. Algorithm for assessing the prospects of offshore oil and gas projects in the Arctic. Energy Reports, 2020; 6: 504-509. https://doi.org/10.1016/j. egyr.2019.11.110.
  • [14] Gautier D.L., Bird K.J., Charpentier R.R., Arthur G., Houseknecht D.H., Klett T.R., Moore T.E., Pitman J.K., Schenk C.J., Schuenemeyer J.H., Kai S., Tennyson M.E., Valin Z.C., Wandrey C.J. Assessment of undiscovered oil and gas in the Arctic, Science, 2009; 324: 1175–1179.
  • [15] Ryerson, C.C. Ice protection of offshore platforms. Cold Reg. Sci. Technol., 2011; 65: 97–110.
  • [16] Bai Y. and Jin W.L. Marine Structural Design (Second Edition), Chapter 12 - Development of Arctic Offshore Technology, Butterworth-Heinemann, 2016; 229-243. https://doi.org/10.1016/B978-0-08-099997-5.00012-5.
  • [17] Fidler C. and Noble B. Advancing strategic environmental assessment in the offshore oil and gas sector: Lessons from Norway, Canada, and the United Kingdom, 2012; 24: 12-21.
  • [18] Budzik, P. Arctic Oil and Natural Gas Potential. US Energy Information Administration Office of Integrated Analysis and Forecasting Oil and Gas Division, 2009.
  • [19] Novitsky, I.G., Portnoy, A.S., Razuvaev, V.N. Design of Offshore Platforms. Requirements of Standards (in Russian) SPBGMTY, 2009; pp. 8-10, 48-54, 72-75, 112-113. [20] Barabadi, A., Tobias Gudmestad, O., Barabady, J. RAMS data collection under Arctic conditions. Reliab. Eng. Syst. Saf., 2015; 135: 92–99.
  • [21] Bubbico R., Lee S., Moscati D., Paltrinieri N. Dynamic assessment of safety barriers preventing escalation in offshore Oil& Gas. Safety Science, 2020; 121: 319-330.
  • [22] Adumene S. and Ikue-John H. Offshore system safety and operational challenges in harsh Arctic operations. Journal of Safety Science and Resilience, 2022; 3: 153-158.
  • [23] Necci A., Tarantola S., Vamanu B., Krausmann E., Ponte L.. Lessons learned from offshore oil and gas incidents in the Arctic and other ice-prone seas. Ocean Engineering, 2019; 185: 12-26.
  • [24] Barabadi A., Garmabaki A.H.S., Zaki R., Designing for performability: An icing risk index for Arctic offshore. Cold Regions Science and Technology, 2016; 124: 77-86.
  • [25] Sujo-Nava D.,Scodari L.A., Slater S.C., Dahm K., Savelski M.J. Retrofit of sour water networks in oil refineries: a case study, Chem. Eng. Process. Process. Intensif, 2009; 48 (April (4)): 892–901.
  • [26] Khazaei A., Mohebbi V., Behbahani R.M., Ramazani S.A.A. Energy consumption in pervaporation, conventional and hybrid processes to separate toluene and i-octane, Chem. Eng. Process. Process. Intensif, 2018; 128 (June): 46–52.
  • [27] Bonnieux, F., Rainelli, P. Learning from the Amoco Cadiz oil spill: damage valuation and court's ruling. Ind. Environ. Crisis Q., 1993; 7 (3): 169–188.
  • [28] Vergeynst L., Wegeberg S., Aamand J., Lassen P., Gosewinkel U., Fritt-Rasmussen J., Gustavson K., Mosbech A. Biodegradation of marine oil spills in the Arctic with a Greenland perspective. Science of the Total Environment, 2018; 626: 1243-1258.
  • [29] NRC. Oil in the Sea III: Inputs, Fates, and Effects. National Academies Press (US), Washington, D.C, 2003.
  • [30] Li, P., Cai, Q., Lin, W., Chen, B., Zhang, B. Offshore oil spill response practices and emerging challenges. Mar. Pollut. Bull., 2016; 110: 6–27. https://doi.org/10.1016/J. MARPOLBUL.2016.06.020.
  • [31] Bullock R., Perkins R., Aggarwal S. In-situ burning with chemical herders for Arctic oil spill response: Meta-analysis and review. Science of the Total Environment, 2019; 675: 705-716.
  • [32] Eger K.M. Effects of Oil Spills in Arctic Waters, CHNL, 2010. http://www.arctis-search.com/Effects+of+Oil+Spills+in+Arctic+Waters
  • [33] Johannsdottir L. and Cook D. Systemic risk of maritime-related oil spills viewed from an Arctic and insurance perspective. Ocean and Coastal Management, 2019; 179: 104853.
  • [34] AMAP. Arctic pollution issues 2014: trends in persistent organic pollutants, radioactivity, and human health in the Arctic - policymakers summary, 2015. https://oaarchive.arctic-council.org/bitstream/handle/11374/1441/AMAP_ POLLUTION_Doc1_Trends_in_POPs_Radioactivity_and_Human_Health_AC_SAO_CA04. pdf?sequence=1&isAllowed=y.
  • [35] Arctic Council. Arctic Oil and Gas. Oslo, Norway, 2007.
  • [36] EPPR. Circumpolar Oil Spill Response Viability Analysis: Technical Report. Tromsø, The Arctic Council, 2017.
  • [37] Stotts, J. Arctic Council Deputy Ministers Meeting: Responding to Emerging Challenges in the Arctic, 2010. Available at: https://oaarchive.arctic-council.org/ bitstream/handle/11374/768/EDOCS-%231977-v1-ACDMMDK01_COPENHAGEN_ 2010_ICC_statement.PDF?sequence=1&isAllowed=y.
  • [38] Nielsen M.H., Bach S., Bollwerk, S.M. Spreading of sediment due to underwater blasting and dredging: Field observations from quay construction in Sisimiut, Greenland. Ocean & Coastal Management, 2015; 116: 512-522.
  • [39] Buckstaff, K., Wells, R.S., Gannon, J.G., Novacek, D.P. Responses of bottlenose dolphins (Tursiops truncatus) to construction and demolition of coastal marine structures. Aquat. Mamm., 2013; 39 (2): 174-186. http://dx.doi.org/10.1578/ AM.39.2.2013.174.
  • [40] Govoni, J.J., West, M.A., Settle, L.R., Lynch, R.T., Greene, M.D. Effects of underwater explosions on larval fish: implications for a coastal engineering project. J. Coast. Res., 2008; 24 (2B): 228-233. http://dx.doi.org/10.2112/05-0518.1.
  • [41] Andrade H. and Renaud P.E. Polychaete/amphipod ratio as an indicator of environmental impact related to offshore oil and gas production along the Norwegian continental shelf. Marine Pollution Bulletin, 2011; 62: 2836-2844.
  • [42] Renaud, P.E., Jensen, T., Wassbotten, I., Mannvik, H.P. Botnen, H. Offshore sediment monitoring on the Norwegian shelf – a regional approach 1996-2006. Akvaplan-niva report no 3487-003, Akvaplan-niva, Tromsø, Norway, 2008.
  • [43] Roca, G., Romero, J., Columbu, S., Farina, S., Pages, J.F., Gera, A., Inglis, G., Alcoverro, T. Detecting the impacts of harbour construction on a seagrass habitat and its subsequent recovery. Ecol. Indic., 2014; 45: 9-17. http://dx.doi.org/ 10.1016/j.ecolind.2014.03.020.
  • [44] Buslaev G., Morenov V., Konyaev Y., Kraslawski A. Reduction of carbon footprint of the production and field transport of high-viscosity oils in the Arctic region. Chemical Engineering and Processing - Process Intensification, 2021; 159: 108189.
  • [45] Shi, X., Veneziano, D., Xie, N., Gong, J. Use of chloride-based ice control products for sustainable winter maintenance: a balanced perspective. Cold Reg. Sci. Technol., 2013; 86: 104–112.
  • [46] Durell, G., Utvik, T.R., Johnsen, S., Frost, T., Neff, J., 2006. Oil well produced water discharges to the North Sea. Part I: Comparison of deployed mussels (Mytilus edulis), semi-permeable membrane devices, and the DREAM model predictions to estimate the dispersion of polycyclic aromatic hydrocarbons. Mar. Environ. Res. 62, 194–223.
  • [47] Johnsen, S., Utvik, T.I., Garland, E., de Vals, B., Campbell, J. Environmental fate and effects of contaminants in produced water. In: Paper Presented at the Seventh International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, Richardson, Texas, , 2004; 9: SPE 86708.
  • [48] Neff, J., Lee, K., DeBlois, E.M. Produced water: overview of composition, fates, and effects. In: Lee, K., Neff, J. (Eds.), Produced Water. Springer, NY, 2011.
  • [49] Beyer J., Goksøyr A., Hjermann D.Ø., Klungsøyr J. Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf. Mar Environ Res., 2020; 162:105155. doi: 10.1016/j.marenvres.2020.105155. Epub 2020 Sep 21. PMID: 32992224.
  • [50] Geraudie, P., Nahrgang, J., Forget-Leray, J., Minier, C., Camus, L. In vivo effects of environmental concentrations of produced water on the reproductive function of polar cod (Boreogadus saida). J. Toxicol. Environ. Health Part A, 2014; 77: 1–17.
  • [51] Boufadel, M., Geng, X., An, C., Owens, E., Chen, Z., Lee, K., Taylor, E., Prince, R.C. A review on the factors affecting the deposition, retention, and biodegradation of oil Stranded on beaches and guidelines for designing laboratory experiments. Curr. Pollut. Rep., 2019; 5: 407–423. https://doi.org/10.1007/s40726-019-00129-0.
  • [52] Thibodeaux, L.J., Valsaraj, K.T., John, V.T., Papadopoulos, K.D., Pratt, L.R., Pesika, N.S. Marine oil fate: knowledge gaps, basic research, and development needs; a perspective based on the Deepwater Horizon spill. Environ. Eng. Sci., 2011; 28: 87–93. https://doi.org/10.1089/ees.2010.0276.
  • [53] Wang Z., Chunjiang An C., Lee K., Boufadel M., Feng Q. Dispersion modeling of particulate matter from the in-situ burning of spilled oil in the northwest Arctic area of Canada. Journal of Environmental Management, 2022; 301: 113913.
  • [54] Olsen, G.H., Carroll, J., Dahle, S., Larsen, L.H., Camus, L. Challenges performing risk assessment in the arctic. In: Lee, K., Neff, J. (Eds.), Produced Water. Springer Science+Business Media, in press. doi:10.1007/978-1- 4614-0046-2_28.
  • [55] Kjesbu, O.S., Knutsen, T., Leknes, I., and Ovrevik, J. Effects of underwater blasts on cod and herring behavior. Environmental Pollution, 2018; 238: 902-910.
  • [56] Houser, D.S., DeRuiter, S.L., Richardson, W.J., and Wartzok, D. Acoustic trauma in beluga whales (Delphinapterus leucas) exposed to underwater blasting. Marine Pollution Bulletin, 2016; 111(1): 345-353.
  • [57] Heide-Jorgensen, M.P., Laidre, K.L., Dietz, R., Wiig, O., and Bech, C. Narwhal response to offshore oil and gas exploration in the Canadian Arctic. Marine Pollution Bulletin, 2017; 120(1-2): 402-409.
  • [58] Kumar, P. and Patra, M. K. Environmental impacts of offshore oil and gas activities in the Arctic: A review. Environmental Science and Technology, 2018; 52(3): 1703-1712.
  • [59] Gulliksen, B., Braithwaite, R., & Fossum, P. The Arctic: A vulnerable and fragile ecosystem. Environmental Research Letters, 2017; 12(3): 033001.
  • [60] Stankiewicz S., https://www.coroflot.com/stevestankiewicz/digital-infographics?school_id=64332&msa=365&
  • [61] Nuka Research and Planning Group. Oil Spill Occurrence Rates for Alaska North Slope Crude & Refined Oil Spills. Report to the Bureau of Ocean Energy Management. OCS Study BOEM, 2013: 205.