BULANIK BAYES AĞLARI YAKLAŞIMI İLE TEHLİKELİ YÜK GEMİLERİNİN RİSK ANALİZİ

Artan küresel taşımacılık, yanaşma operasyonları sırasında tehlikeli yük gemilerinin elleçlenmesi konusunda sorunları artırmaktadır. Bu makale, çeşitli etkileyen faktörlerin tanımlanması, bu faktörlerin çıkarımı ve analizi için bir Bulanık Bayes Ağı kullanmaktadır. Sonuçlar, tehlikeli yük gemilerinin risk olasılığını çözmek için daha fazla dikkat gerektirdiğini göstermektedir. İnsan ve çevre en öne çıkan faktörlerlerdir. Bunun yanı sıra, gemi personelinin eğitimi, rüzgar kuvveti, su hızı, kanal genişliği, rıhtım düzeni ve liman konumu dikkate alınması gereken diğer önemli faktörlerdir. Tehlikeli yük gemileri için risk yönetimi için, liman yetkilileri tehlikeli yük gemilerinin zarar görmeyecek şekilde yanaşmasına odaklanmalıdır. Önerilen model, hükümetler, hat şirketleri ve liman yetkilileri için belirgin bir uygulanabilirliğe sahiptir.

A FUZZY BAYESIAN NETWORK APPROACH FOR RISK ANALYSIS OF HAZARDOUS CARGO SHIPS

The increasing global transportation raises some concerns over the handling of hazardous cargo vessels during berthing operations. This paper uses a Fuzzy Bayesian Network for the identification of various influencing factors, the inference, and analysis of these factors. The results show that dangerous cargo ships require more attention to resolve the risk probability. Human and environmental factors are the most prominent factors. On the other hand, training of ship personnel, wind force, water velocity, channel width, dock layout, and port location are other important factors to be taken into consideration. To conduct risk management for hazardous cargo vessels, port authorities need to focus on the invulnerable berthing of hazardous cargo vessels. The proposed model has prominent practical viability for governments, liner companies, and port authorities.

___

  • Akyuz, E., 2016. A marine accident analysing model to evaluate potential operational causes in cargo ships. Safety Science, 17-25.
  • Akyuz, E. & Celik, M., 2015. A methodological extension to human reliability analysis for cargo tank cleaning operation on board chemical tanker ships. Safety Science, 75, 146-155. Akyuz, E. & Celik, M., 2016. A hybrid human error probability determination approach: The case of cargo loading operation in oil/chemical tanker ship. Journal of Loss Prevention in the Process Industries, 43, 424-431.
  • Blasco, J., Durán-Grados, V., Hampel, M. & Moreno-Gutiérrez, J., 2014. Towards an integrated environmental risk assessment of emissions from ships' propulsion systems.
  • Bubbico, R., Di Cave, S. & Mazzarotta, B., 2009. Preliminary risk analysis for LNG tankers approaching a maritime terminal. Journal of Loss Prevention in the Process Industries, 22, 634- 638.
  • Celik, M., Er, I. D. & Topcu, Y. I., 2009. Computer-based systematic execution model on human resources management in maritime transportation industry: The case of master selection for embarking on board merchant ships. Expert Systems with Applications, 36, 1048-1060.
  • Chang, C.-H., Xu, J., & Song, D.-P., 2013. An analysis of safety and security risks in container shipping operations: A case study of Taiwan. Safety Science, 168-178.
  • Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.-P. & Langard, B., 2013. Human and organizational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Accident Analysis & Prevention, 59, 26-37.
  • Condary, S., & Jouffe, D. (2013). Introduction to Bayesian Networks & BayesiaLab.
  • Cunningham, L. K., 2012. Risk Assessment Methodology for Marine Terminals. Ports '01. ASCE Library.
  • Det Norske Veritas Inc., 2016. Canaport energy east marine terminal risk studies. Final Termpol Study Report: Element 3.15 Risk Assessment, Texas.
  • Detyniecki, M., & Yager, R. R. (2001). Ranking Fuzzy Numbers Using α-weighted Valuations. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 573-591.
  • Eleye-Datubo, A. G., Wall, A., Saajedi, A. & Wang, J., 2006. Enabling a powerful marine and offshore decision-support solution through Bayesian Network technique. Risk Analysis, 26, 695-721.
  • Gorris, L., & Yoe, C. (2014). Risk Assessment:Principles, Methods,andApplications. Elsevier Inc.
  • Hänninen, M. & Kujala, P., 2014. Bayesian Network modeling of port state control inspection findings and ship accident involvement. Expert Systems with Applications, 41, 1632-1646.
  • Hänninen, M., Valdez Banda, O. A. & Kujala, P., 2014. Bayesian Network model of maritime safety management. Expert Systems with Applications, 41, 7837-7846.
  • Hetherington, C., Flin, R. & Mearns, K., 2006. Safety in shipping: The human element. Journal of Safety Research, 37, 401-411.
  • Hsu, W. K., 2015. assessing the safety factors of ship berthing operations. The Journal Of Navigation, 576-588.
  • Huang, P. & Zhang, J., 2015. Facts Related to August 12, 2015 explosion accident in Tianjin, China. Process Safety Progress, 34, 313-314.
  • Inanloo, B. & Tansel, B., 2015. Explosion impacts during transport of hazardous cargo: GIS-based characterization of overpressure impacts and delineation of flammable zones for ammonia. Journal of Environmental Management, 156, 1-9.
  • International Maritime Organization (IMO), 2006. International Maritime Dangerous Goods Code. London: Polestar Wheatons Ltd, Exeter.
  • John, A., Yang, Z., Riahi, R., & Wang, J., 2015. A risk assessment approach to improve the resilience of a seaport system using Bayesian networks. Ocean Engineering, 136-147.
  • John, A., Paraskevadakis, D., Bury, A., Yang, Z., Riahi, R. & Wang, J., 2014. An integrated fuzzy risk assessment for seaport operations. Safety Science, 68, 180-194.
  • Karwowski, W., & Mital, A. (1986). Potential Application of Fuzzy Sets in Industrial Safety Engineering. Fuzzy Sets and Systems 19, 105-120.
  • Khan, R. U., Yin, J., Mustafa, F. S., & Anning, N. (2021). Risk assessment for berthing of hazardous cargo vessels using Bayesian networks. Ocean & Coastal Management, 210, 105673
  • Kite-Powell, H. L., Jin, D., Jebsen, J., Papakonstantinou, V. & Patrikalakis, N., 1999. Investigation of potential risk factors for groundings of commercial vessels in U.S. Ports. International Journal of Offshore and Polar Engineering, 9, 6.
  • Kröger, W., 2008. Critical infrastructures at risk: A need for a new conceptual approach and extended analytical tools. Reliability Engineering & System Safety, 93, 1781-1787.
  • Lam, J. S. L. & Su, S., 2015. Disruption risks and mitigation strategies: an analysis of Asian ports.
  • Maritime Policy & Management, 42, 415-435.
  • Mentes, A., Akyildiz, H., Yetkin, M. & Turkoglu, N., 2015. A FSA based fuzzy DEMATEL approach for risk assessment of cargo ships at coasts and open seas of Turkey. Safety Science, 79, 1-10.
  • Montewka, J., Ehlers, S., Goerlandt, F., Hinz, T., Tabri, K. & Kujala, P., 2014. A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels. Reliability Engineering & System Safety, 124, 142-157.
  • Murdoch, E., Clarke, C., & Dand, I. W., 2012. The Standard and P&I Club: A Master's Guide to Berthing. London.
  • O’NEIL, W. A. 2003. The human element in shipping. WMU Journal of Maritime Affairs, 2, 95-97.
  • Pak, J.-Y., Yeo, G.-T., Oh, S.-W., & Yang, Z., 2015. Port safety evaluation from a captain’s perspective: The Korean experience. Safety Science, 172-181.
  • Reniers, G. & Dullaert, W. 2012. Tepitri: A screening method for assessing terrorist-related pipeline transport risks. Security Journal, 25, 173-186.
  • Reniers, G. L. L., Jongh, K. D., Gorrens, B., Lauwers, D., Leest, M. V. & Witlox, F. 2010. Transportation Risk Analysis tool for hazardous Substances (TRANS) – A user-friendly, semi-quantitative multi-mode hazmat transport route safety risk estimation methodology for Flanders. Transportation Research Part D: Transport and Environment, 15, 489-496.
  • Ren, J., Jenkinson, I., Wang, J., Xu, D. L. & Yang, J. B., 2009. An offshore risk analysis method using Fuzzy Bayesian Network. Journal of Offshore Mechanics and Arctic Engineering, 131, 1-12.
  • Ren, J., Wang, J., Jenkinson, I., Xu, D. L., Yang, J. B., & Yang, J. B., 2007. A Bayesian network approach for offshore risk analysis through linguistic variables. China Ocean Engineering, 371-388.
  • Ronza, A., Félez, S., Darbra, R. M., Carol, S., Vílchez, J. A. & Casal, J. 2003. Predicting the frequency of accidents in port areas by developing event trees from historical analysis. Journal of Loss Prevention in the Process Industries, 16, 551-560.
  • Trbojevic, V. M. & Carr, B. J., 2000. Risk-based methodology for safety improvements in ports. Journal of Hazardous Materials, 71, 467-480.
  • Trucco, P., Cagno, E., Ruggeri, F., Grande, O., 2008. A Bayesian Belief Network modeling of organizational factors in risk analysis: A case study in maritime transportation. Reliability Engineering & System Safety 93(6):845–856.
  • Soni, D., 2018. What is Bayes Rule? Retrieved from Towards Data Science: https://towardsdatascience.com/what-is-bayes-rule-bb6598d8a2fd.
  • Stephen, T. A., 2000. An Introduction to Bayesian Network Theory and Usage. Valais: IDIAP.
  • Stefanini, L., & Sorini, L., Guerra, M.L., 2008. Fuzzy Numbers and Fuzzy Arithmetic, Handbook of Granular Computing, 249 – 283.
  • Skowron, & V. Kreinovich, Handbook of Granular Computing (pp. 249-283). A John Wiley & Sons, Ltd, Publication.
  • Trucco, P., Cagno, E., Ruggeri, F. & Grande, O. 2008. A Bayesian Belief Network modeling 519 of organizational factors in risk analysis: A case study in maritime transportation. Reliability 520 Engineering & System Safety, 93, 845-856.
  • Wen-hua, W., Hou-ming, F., Wen-gang, C., & Yang, G., 2015. oil spill risk evaluation of ship mooring and cargo handling on ports using bayesian networks. International Conference on Management Science & Engineering, 394-402, Dubai.
  • Wang, J., & Foinikis, P. (2001). Formal safety assessment of containerships. Marine Policy, 143-157.
  • Yeo, C., Bhandari, J., Abbassia, R., Garaniyaa, V., Chaia, S., & Shomalib, B., 2016. dynamic risk analysis of offloading process in Floating Liquefied Natural Gas (FLNG) platform using bayesian network. Journal of Loss Prevention in the Process Industries.
  • Zhao, L., Wang, X. & Qian, Y. 2012. Analysis of factors that influence hazardous material transportation accidents based on Bayesian Networks: A case study in China. Safety Science, 50, 1049-1055.
  • Zhao, S., Zhu, H., & Soares, C. G., 2015. A Bayesian network modeling and risk analysis on LNG carrier anchoring system. The 3rd International Conference on Transportation Information and Safety, (pp. 432-436). Wuhan.