BİTKİSEL LİF-BÜTİRİK ASİT ESTERLERİNİN ÜRETİMİ VE KEK FORMÜLASYONUNDA EMÜLGATÖR OLARAK KULLANIMI

Sunulan bu çalışmada, nispeten kısa ve ince lifler içeren bir buğday kepeğinden, ıslak öğütme tekniği kullanılarak selüloz içeriği yüksek lifler elde edilmiş ve sonrasında bütirik asit ile beş farklı derecede esterleştirilmiştir. Bu esterleştirme işlemi ile farklı oranlarda hidrofilik ve lipofilik gruplara sahip bitkisel lif-bütirik asit esterleri üretilmiştir. Elde edilen bu ürünlerin karakterizasyonu için esterleşme derecesi, su tutma kapasitesi, FTIR (Fourier Dönüşümlü Kızılötesi Spektroskopi), SEM (Taramalı Elektron Mikroskopi) ve TGA (Termogravimetrik Analiz) analizleri gerçekleştirilmiştir. Ürünlerin karakterizasyonu tamamlandıktan sonra, bu bitkisel lif-bütirik asit esterleri emülgatör olarak kullanılması amacıyla kek formülasyonuna eklenmiştir. Kek örneklerinin renk, kurumadde içeriği ve tekstürel özellikleri incelenmiştir. Yapılan analizler sonucunda, tüm örneklerin renk değerleri ve kuru madde içerikleri kontrol örneğine benzer bulunmuştur. Ancak, tekstürel analizlerde sertlik, gamlılık ve çiğnenebilirlik değerlerinde hafif bir azalma gözlemlenmiştir.

PRODUCTION OF PLANT-BASED FIBER-BUTYRIC ACID ESTERS AND THEIR USE AS EMULSIFIER IN CAKE FORMULATION

In this study, fibers with high cellulose content were obtained from a wheat bran containing relatively short and fine fibers by wet milling technique and then esterified with butyric acid at five different degrees. With this esterification process, plant fiber-butyric acid esters with different ratios of hydrophilic and lipophilic groups were produced. For the characterization of these products, esterification degree, water holding capacity, FTIR (Fourier Transform Infrared Spectroscopy), SEM (Scanning Electron Microscopy) and TGA (Thermogravimetric Analysis) analyses were performed. After the characterization of the products was completed, these plant fiber-butyric acid esters were added to the cake formulation to be used as emulsifiers. Color, dry matter content and textural properties of the cake samples were analyzed. As a result of the analyses, color values and dry matter contents of all samples were similar to the control sample. However, a slight decrease in hardness, gumminess and chewiness values was observed in textural analysis.

___

  • Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami, A. A., Asl, A. K. (2015). Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): Morphological and physical properties. Food Packaging and Shelf Life, 5, 21–31. https://doi.org/10.1016/J.FPSL.2015.04.003
  • Bardak, S., Nemli, G., Bardak, T., Peker, H. (2020). Possibilities of Using Sunflower Tray in Particleboard Industry. Journal of Bartin Faculty of Forestry, 22(2), 485–499. https://doi.org/10.24011/barofd.685838
  • Erinc, H., Mert, B., Tekin, A. (2018). Different sized wheat bran fibers as fat mimetic in biscuits: its effects on dough rheology and biscuit quality. Journal of Food Science and Technology, 55(10), 3960–3970. https://doi.org/10.1007/S13197-018-3321-9
  • Erinç, Ö., Erinç, H., Mert, B., Özbey, A. (2021). Optimization of nanocellulose esterification with different fatty acids and acetic anhydride in lithium chloride/dimethylacetamide medium. GIDA/The Journal of Food, 46(6), 1467–1480. https://doi.org/10.15237/GIDA.GD21118
  • Erinç, Ö., Erinç, H., Mert, B., Özbey, A. (2023). Optimization of nanofiber-caproate/laurate esters synthesis, their characterization, and usage as emulsifier in o/w emulsion. Journal of the American Oil Chemists’ Society. https://doi.org/10.1002/AOCS.12722
  • Freire, C. S. R., Silvestre, A. J. D., Neto, C. P., Belgacem, M. N., Gandini, A. (2006). Controlled heterogeneous modification of cellulose fibers with fatty acids: Effect of reaction conditions on the extent of esterification and fiber properties. Journal of Applied Polymer Science, 100(2), 1093–1102. https://doi.org/10.1002/APP.23454
  • Gourson, C., Benhaddou, R., Granet, R., Krausz, P., Verneuil, B., Branland, P., Chauvelon, G., Thibault, J. F., Saulnier, L. (1999). Valorization of Maize Bran to Obtain Biodegradable Plastic Films. Journal of Applied Polymer Science, 74(13), 3040–3045. https://doi.org/10.1002/ (SICI)1097-4628(19991220)74:13
  • Guo, Y., Wang, X., Li, D., Du, H., Wang, X., Sun, R. (2012). Synthesis and characterization of hydrophobic long-chain fatty acylated cellulose and its self-assembled nanoparticles. Polymer Bulletin, 69(4), 389–403. https://doi.org/ 10.1007/S00289-012-0729-7
  • Heredia-Guerrero, J. A., Goldoni, L., Benítez, J. J., Davis, A., Ceseracciu, L., Cingolani, R., Bayer, I. S., Heinze, T., Koschella, A., Heredia, A., Athanassiou, A. (2017). Cellulose-polyhydroxylated fatty acid ester-based bioplastics with tuning properties: Acylation via a mixed anhydride system. Carbohydrate Polymers, 173, 312–320. https://doi.org/10.1016/ J.CARBPOL.2017.05.068
  • Jia, F., Liu, H., Zhang, G. (2016). Preparation of Carboxymethyl Cellulose from Corncob. Procedia Environmental Sciences, 31, 98–102. https://doi.org/10.1016/J.PROENV.2016.02.013
  • Kanwar, S., Ali, U., Mazumder, K. (2021). Effect of cellulose and starch fatty acid esters addition on microstructure and physical properties of arabinoxylan films. Carbohydrate Polymers, 270, 118317. https://doi.org/10.1016/ J.CARBPOL.2021.118317
  • Lease, J., Kawano, T., Andou, Y. (2021). Esterification of Cellulose with Long Fatty Acid Chain through Mechanochemical Method. Polymers, 13(24). https://doi.org/10.3390/ POLYM13244397
  • McConnell, A. A., Eastwood, M. A., Mitchell, W. D. (1974). Physical characteristics of vegetable foodstuffs that could influence bowel function. Journal of the Science of Food and Agriculture, 25(12), 1457–1464. https://doi.org/10.1002/ JSFA.2740251205
  • Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994. https://doi.org/10.1039/C0CS00108B
  • Reddy, J. P., ve Rhim, J. W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488. https://doi.org/10.1016/J.CARBPOL.2014.04.056
  • Robles, E., Urruzola, I., Labidi, J., Serrano, L. (2015). Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Industrial Crops and Products, 71, 44–53. https://doi.org/10.1016/J.INDCROP.2015.03.075
  • Satgé, C., Granet, R., Verneuil, B., Branland, P., Krausz, P. (2004). Synthesis and properties of biodegradable plastic films obtained by microwave-assisted cellulose acylation in homogeneous phase. Comptes Rendus Chimie, 7(2), 135–142. https://doi.org/10.1016/ J.CRCI.2003.11.003
  • Siró, I., ve Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 2010 17:3, 17(3), 459–494. https://doi.org/10.1007/S10570-010-9405-Y
  • Tekin, A., Mert, B., Erinç, H., Koçak, G., Bigikoçin, E., Şahin, E., Ketenoğlu, O. (2011). Bitkisel kökenli atıklardan mikro-akışkan yöntemiyle nano boyutlarda reoloji düzenleyicilerinin üretilmesi: Emülsiyonlarda, kolloitlerde ve hamur ürünlerinde kullanılması. https://open.metu.edu.tr/ handle/11511/49515
  • Wang, X., Wang, N., Xu, B., Wang, Y., Lang, J., Lu, J., Chen, G., Zhang, H. (2021). Comparative Study on Different Modified Preparation Methods of Cellulose Nanocrystalline. Polymers 2021, Vol. 13, Page 3417, 13(19), 3417. https://doi.org/10.3390/POLYM13193417
  • Wei, L., Agarwal, U. P., Hirth, K. C., Matuana, L. M., Sabo, R. C., Stark, N. M. (2017). Chemical modification of nanocellulose with canola oil fatty acid methyl ester. Carbohydrate Polymers, 169, 108–116. https://doi.org/10.1016/ J.CARBPOL.2017.04.008
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR