Tarımsal ürünlerde yıkama işlemlerinin pestisit kalıntıları üzerine etkileri

Amaç: Son yıllarda yaş meyve sebzelerde pestisit kalıntılarının analizine ilave olarak işlenmiş tarımsal ürünlerde de kalıntıların belirlenmesi üzerine araştırmalar yapılmaktadır. Üreticiler, ürünü pazarlamada problem olduğunda veya ürününe katma değer kazandırmak istediğinde, ürününü çeşitli şekillerde işlemeyi tercih etmektedir. Bu anlamda da işlemeden sonra ürünlerde pestisitlerin akıbetinin bilinmesi önemlidir. Bu ürün işlemelerinin en fazla kullanılanları, yıkama, kabuk soyma, kurutma ve meyve suyu işlemedir. Bu çalışmada, çeşitli yıkama tekniklerinin pestisit kalıntılarının giderilmesi üzerine etkisi ve buna etkili olan çeşitli faktörlerin (pestisitin suda çözünürlüğü, etki mekanizması, hasat ile son ilaçlama arasında geçen süre ve yıkamanın süresi) derlenmesi amaçlanmıştır. Sonuç: Pestisitlerin ürünlerden uzaklaştırılması için çeşitli yıkama işlemleri vardır. Yıkama genellikle pestisit kalıntılarını azaltır. Toksik olmayan asidik çözeltiler, ozonlu su, ultrasonik temizleme ile yıkamanın çoğu çalışmada musluk suyu ile yıkamaya göre daha etkili olduğu bulunmuştur. Yıkama işlemini etkileyen en önemli faktörler pestisitin suda çözünürlüğü ve etki şeklidir. Tarlada ilaçlama, pestisitlerin biyolojik olarak aktif bitki kısımlarına nüfuz etmesine izin verdiği için, yıkama işleminde tarlada ilaçlanmış numuneler kullanılmalıdır. Bu derleme çalışmasında meyve ve sebzelerin tüketilmeden önce yıkanması gerekliliği bir kez daha vurgulanmıştır.

Effects of washing treatments on pesticide residues in agricultural products

Objective: In recent years, besides the analysis of pesticide residues in fresh fruit and vegetables, researches have also been carried out on residue removal or reduction rates on different agricultural commodities. Farmers prefer various food-processing methods when they experience problems in marketing or when they wish to have value-added. In this sense, it is important to know the fate of pesticides after processing. Washing, peeling, drying and processing into fruit juice are the most common processing methods applied to fruits. In this study, it is aimed to compile information about the effects of various washing methods on pesticide residue removal or reduction rates and the factors (pesticide water solubility and mode of action, preharvest intervals, type, and duration of washing) affecting such removal or reduction rates. Conclusion: There are various washing processes for the removal of pesticides from agricultural commodities. Washing usually reduces pesticide residues. Washing with non-toxic acidic solutions, ozonated water, and ultrasonic cleaning have been found to be more effective than washing with tap water. The most important factors affecting washing processes were identified as pesticide water solubility and mode of action. Since field-spraying allows the pesticides to penetrate into biologically active plant parts, field-sprayed samples should be used in washing processes. In this review study, the necessity of washing fruits and vegetables before consumption was pointed out once again.

___

  • Acoglu, B., Yolcı Ömeroğlu, P. & Utku Çopur, Ö. (2018). Gıda işleme süreçlerinin pestisit kalintilari üzerine etkisi ve işleme faktörleri. Gıda ve Yem Bilimi Teknolojisi Dergisi, (19),42-54. Retrieved from https://dergipark.org.tr/tr/pub/bursagida/ issue/40169/477821.
  • Acoglu, B. & Omeroglu, P. Y. (2021). Effectiveness of different type of washing agents on reduction of pesticide residues in orange (Citrus sinensis). LWT, 147. Retrieved from https://doi.org/10.1016/j.lwt.2021.111690.
  • Al-Taher, F., Chen, Y., Wylie, P. & Cappozzo, J. (2013). Reduction of pesticide residues in tomatoes and other produce. Journal of food protection, 76(3), 510–515. Retrieved from https://doi.org/10.4315/0362-028X.JFP-12-240.
  • Amir, R. M., Randhawa, M. A., Nadeem, M., Ahmed, A., Ahmad, A., Khan, M. R., ... & Kausar, R. (2019). Assessing and reporting household chemicals as a novel tool to mitigate pesticide residues in spinach (Spinacia oleracea). Scientific reports, 9(1), 1-6.
  • Aslansoy, Z. (2012). Ozonlama işleminin limondaki pestisit kalıntıları üzerine etkisi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Adana.
  • Bajwa, U., & Sandhu, K. S. (2014). Effect of handling and processing on pesticide residues in food- a review. Journal of food science and technology, 51(2), 201-220. Retrieved from https://doi.org/10.1007/s13197-011-0499-5
  • Baltacı, M.H. (2015). Ozonla pestisit giderimi uygulamasının domateste renk ve C vitaminine etkileri. Yüksek Lisans Tezi. Ankara Üniversitesi.
  • Bian, Y., Wang, J., Liu, F., Mao, B., Huang, H., Xu, J., Li, X., & Guo, Y. (2020). Residue behavior and removal of iprodione in garlic, green garlic, and garlic shoot. Journal of the science of food and agriculture, 100(13), 4705–4713. Retrieved from https://doi.org/10.1002/jsfa.10527.
  • Bonnechère, A., Hanot, V., Jolie, R., Hendrickx, M., Bragard, C., Bedoret, T., & Van Loco, J. (2012a). Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control, 25(1), 397-406. doi:10.1016/j.foodcont. 2011.11.010.
  • Bonnechère, A., Hanot, V., Jolie, R., Hendrickx, M., Bragard, C., Bedoret, T., & Loco, J. van. (2012b). Processing factors of several pesticides and degradation products in carrots by household and industrial processing. Journal of Food Research, 1(3), 68–83. Retrieved from https://www.ccsenet.org/journal/index.php/jfr/article/view/17637/11831.
  • Bonnechère, A., Hanot, V., Bragard, C., Bedoret, T., & Van Loco, J. (2012c). Effect of household and industrial processing on the levels of pesticide residues and degradation products in melons. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 29(7), 1058–1066. Retrieved from https://doi.org/10.1080/19440049.2012.672339.
  • Buakham, R., Songsermpong, S., & Eamchotchawalit, C. (2012). Kinetics of the reduction of pesticide residues in vegetables by ultrasonic cleaning. Asian Journal of Food and Agro-Industry, 5(5), 364-373.
  • Cabras, P., Angioni, A., Garau, V. L., Melis, M., Pirisi, F. M., Karim, M., & Minelli, E. V. (1997). Persistence of insecticide residues in olives and olive oil. Journal of Agricultural and Food Chemistry, 45(6), 2244-2247.
  • Cabras, P., Angioni, A., Garau, V. L., Pirisi, F. M., Brandolini, V., Cabitza, F., & Cubeddu, M. (1998). Pesticide residues in prune processing. Journal of Agricultural and Food Chemistry, 46(9), 3772-3774.
  • Chen, C., Liu, C., Jiang, A., Zhao, Q., Liu, S., & Hu, W. (2020). Effects of ozonated water on microbial growth, quality retention and pesticide residue removal of fresh-cut onions. Ozone: Science & Engineering, 42(5), 399-407.
  • Çatak, H., Polat, B. & Tiryaki, O. (2020). Farklı yıkama uygulamaları ile kapya biberlerde pirimiphos-methyl kalıntısının giderilmesi. Anadolu Tarım Bilimleri Dergisi, 35 (1), 97-105. DOI: 10.7161/omuanajas.646733.
  • Dong, F. (2012). The pesticide residue changes during food processing and storage. Institute of Plant Protection-Chinese Academy of Agricultural Sciences. 20 February 2012. Retrieved from https://www.safefoods.nl/upload_mm/9/0/9/f1f3d226-b38f-49fb-9d1e-f7eccfe34797_ma6.pdf.
  • Duman, A., Çiftçi, U. & Tiryaki, O. (2021). Farklı yıkama işlemlerinin üzümlerde tebuconazole kalıntısına etkisi. ÇOMÜ Ziraat Fakültesi Dergisi, 9(2), 259-269. DOI: 10.33202/comuagri.878597.
  • Ghani, S. A., Hanafi, A., & Nasr, I. N. (2010). Non-toxic washing solutions for decreasing myclobutanil, fenhexamid and boscalid residues in sweet pepper and cherry tomatoes. Australian Journal of basic and applied sciences, 4(8), 3360-3365.
  • González-Rodríguez, R. M., Rial-Otero, R., Cancho-Grande, B., Gonzalez-Barreiro, C., & Simal-Gándara, J. (2011). A review on the fate of pesticides during the processes within the food-production chain. Critical reviews in food science and nutrition, 51(2), 99–114. Retrieved from https://doi.org/10.1080/10408390903432625.
  • Hassan, H., Elsayed, E., El-Raouf, A. E. R. A., & Salman, S. N. (2019). Method validation and evaluation of household processing on reduction of pesticide residues in tomato. Journal of consumer protection and food safety, 14(1), 31-39.
  • Hassanzadeh, N., Bahramifar, N., & Esmaili-Sari, A. (2010). Residue content of carbaryl applied on greenhouse cucumbers and its reduction by duration of a pre-harvest interval and post-harvest household processing. Journal of the science of food and agriculture, 90(13), 2249–2253. Retrieved from https://doi.org/10.1002/jsfa.4078
  • Heshmati, A., Nili-Ahmadabadi, A., Rahimi, A., Vahidinia, A., & Taheri, M. (2020). Dissipation behavior and risk assessment of fungicide and insecticide residues in grape under open-field, storage and washing conditions. Journal of cleaner production, 270, 122287.
  • Holland, P. T., Hamilton, D., Ohlin, B., & Skidmore, M. W. (1994). Effects of storage and processing on pesticide residues in plant products. Pure and applied chemistry, 66(2), 335-356. Khadre, M. A., Yousef, A. E., & Kim, J. G. (2001). Microbiological aspects of ozone applications in food: a review. Journal of food science, 66(9), 1242-1252.
  • Kentish, S., & Feng, H. (2014). Applications of power ultrasound in food processing. Annual review of food science and technology, 5, 263-284.
  • Kim, S.D., Kim, I.D., Park, M.Z., & Lee, Y.G. (2000). Effect of ozone water on pesticide-residual contents of soybean sprouts during cultivation. Korean Journal of Food Science and Technology, 32, 277-283.
  • Kong, Z., Dong, F., Xu, J., Liu, X., Li, J., Li, Y., ... & Zheng, Y. (2012). Degradation of acephate and its metabolite methamidophos in rice during processing and storage. Food Control, 23(1), 149-153.
  • Krol, W. J., Arsenault, T. L., Pylypiw, H. M., Jr, & Incorvia Mattina, M. J. (2000). Reduction of pesticide residues on produce by rinsing. Journal of agricultural and food chemistry, 48(10), 4666–4670. https://doi.org/10.1021/jf0002894.
  • Leyva, J., Lee, P., & Goh, K. S. (1998). Removal of malathion residues on lettuce by washing. Bulletin of environmental contamination and toxicology, 60(4), 592–595. https://doi.org/ 10.1007/s001289900666.
  • Ling, Y., Wang, H., Yong, W., Zhang, F., Sun, L., Yang, M. L., Wu, Y.N. & Chu, X. G. (2011). The effects of washing and cooking on chlorpyrifos and its toxic metabolites in vegetables. Food Control, 22(1), 54-58.
  • Lozowicka, B., Jankowska, M. & Kaczyński, P. (2011) Pesticide residues in Brassica vegetables and exposure assessment of consumers. Food control, 25, 561-575.
  • Lozowicka, B., Kaczyński, P., Rutkowska, E., Jankowska, M. & Hrynko, I. (2013) Evaluation of pesticide residues in fruit from Poland and health risk assessment. Agricultural Sciences, 4, 106-111. doi: 10.4236/as.2013.45B020.
  • Lozowicka, B., Jankowska, M., Hrynko, I., & Kaczynski, P. (2016). Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental monitoring and assessment, 188(1), 51. Retrieved from https://doi.org/10.1007/ s10661-015-4850-6.
  • OECD. (2008). OECD guidance document on the magnitude of pesticide residues in processed commodities ENV/JMMONO (2008) 23. Retrieved from http://www.oecd.org/official documents/publicdisplaydocumentpdf/?cote=env/jm/mono(2008)23&do clanguage=en.
  • Özel, E., & Tiryaki, O. (2019). Determination of imidacloprid and indoxacarb residues in apple and it’s processed products. Bitki Koruma Bülteni, 59(2), 23–32. Retrieved from https://doi.org/ https://dergipark.org.tr/tr/download/article-file/744594.
  • Polat B., & Tiryaki O., (2018). Removal of some pesticide residues from capia peppers by using different washing treatments. 10th MGPR International Symposium of Pesticides in Food and the Environment in Mediterranean Countries, Bologna, Italy, 12 - 14 September 2018, ss.13-14.
  • Polat, B., & Tiryaki, O. (2020). Assessing washing methods for reduction of pesticide residues in capia pepper with LC-MS/MS. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 55(1), 1–10. Retrieved from https://doi.org/10.1080/ 03601234.2019.1660563.
  • Polat, B. (2021). Reduction of some insecticide residues from grapes with washing treatments. Turkish journal of entomology, 45(1), 125–137. Retrieved from https://doi.org/10.16970/ entoted.843754.
  • Randhawa, M. A., Anjum, M. N., Butt, M. S., Yasin, M., & Imran, M. (2014a). Minimization of imidacloprid residues in cucumber and bell pepper through washing with citric acid and acetic acid solutions and their dietary intake assessment. International Journal of Food Properties, 17(5), 978-986.
  • Randhawa, M. A., Anjum, F. M., Asi, M. R., Ahmed, A., & Nawaz, H. (2014b). Field incurred endosulfan residues in fresh and processed vegetables and dietary intake assessment. International Journal of Food Properties, 17(5), 1109-1115.
  • Rodrigues, A., De Queiroz, M., De Oliveira, A. F., Neves, A. A., Heleno, F. F., Zambolim, L., … & Morais, E. (2017). Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 52(12), 850–857. Retrieved from https://doi.org/10.1080/03601234.2017.1359049
  • Romeh, A. A., Mekky, T. M., Ramadan, R. A., & Hendawi, M. Y. (2009). Dissipation of profenofos, imidacloprid and penconazole in tomato fruits and products. Bulletin of environmental contamination and toxicology, 83(6), 812–817. Retrieved from https://doi.org/10.1007/s00128-009-9852-z.
  • Saeedi Saravi, S. S., & Shokrzadeh, M. (2016). Effects of washing, peeling, storage, and fermentation on residue contents of carbaryl and mancozeb in cucumbers grown in greenhouses. Toxicology and industrial health, 32(6), 1135–1142. Retrieved from https://doi.org/10.1177/0748233714552295.
  • Saranjampour, P., Vebrosky, E. N., & Armbrust, K. L. (2017). Salinity impacts on water solubility and n‐octanol/water partition coefficients of selected pesticides and oil constituents. Environmental toxicology and chemistry, 36(9), 2274-2280.
  • Ruengprapavut, S., Sophonnithiprasert, T., & Pongpoungphet, N. (2020). The effectiveness of chemical solutions on the removal of carbaryl residues from cucumber and chili presoaked in carbaryl using the HPLC technique. Food Chemistry, 309, 125659. Retrieved from https://doi.org/10.1016/j.foodchem.2019.125659.
  • Satpathy, G., Tyagi, Y. K., & Gupta, R. K. (2012). Removal of organophosphorus (OP) pesticide residues from vegetables using washing solutions and boiling. Journal of Agricultural Science, 4(2), 69-78.
  • Soliman K. M. (2001). Changes in concentration of pesticide residues in potatoes during washing and home preparation. Food and chemical toxicology: an international journal published for the British industrial biological research association, 39(8), 887–891. Retrieved from https://doi.org/10.1016/ s0278-6915(00)00177-0.
  • Tiryaki, O., & Temur, C. (2010). The fate of pesticide in the environment. Journal of biological and environmental sciences, 4(10), 29-38.
  • Yang, J., Song, L., Pan, C., Han, Y., & Kang, L. (2020). Removal of ten pesticide residues on/in kumquat by washing with alcaline electrolysed water. International Journal of Environmental Analytical Chemistry, 1-14.
  • Wu, J., Luan, T., Lan, C., Lo, T. W. H., & Chan, G. Y. S. (2007). Removal of residual pesticides on vegetables using ozonated water. Food Control, 18(5), 466-472.
  • Zhang, J., Li, M. M., Zhang, R., Jin, N., Quan, R., Chen, D. Y., ... & Fan, B. (2020). Effect of processing on herbicide residues and metabolite formation during traditional Chinese tofu production. LWT, 131, 109707.
  • Zhao, L., Ge, J., Liu, F., & Jiang, N. (2014). Effects of storage and processing on residue levels of chlorpyrifos in soybeans. Food Chemistry, 150, 182-186.