Yeşil Şeftali Yaprakbiti Myzus persicae'de (Sulzer) (Hemiptera: Aphididae) Acetamiprid Direnci: Seleksiyon, Çapraz Direnç, Biyokimyasal ve Moleküler Direnç Mekanizmaları

Myzus persicae (Sulzer) (Hemiptera: Aphididae), birçok üründe önemli kayıplara neden olan polifag bir zararlıdır.Bu çalışmada, laboratuarda seleksiyon baskısı sonucunda direnç oranı 57.5 kata ulaşan bir M. persicae popülasyonunda acetamipriddirencinin biyokimyasal ve moleküler mekanizması araştırılmıştır. Çalışma 2018-2020 yılları arasında Isparta Uygulamalı Bilimler Üniversitesi, Ziraat Fakültesi, Bitki Koruma bölümünde yürütülmüştür. Sinerjistik, biyokimyasal ve moleküler çalışmalar, seleksiyon popülasyonunda artan P450 aktivitesinin olmadığını göstermiştir. Buna ilaveten, seleksiyon popülasyonunda, acetamiprid dahil neonikotinoidlerin hedef bölgesi olan nikotinik asetilkolin reseptöründe (nAChR) herhangi bir nokta mutasyonu belirlenmemiştir. Bu sonuçlar, seleksiyon popülasyonunda artan P450 aktivitesi ve hedef bölge mutasyonları dışındaki mekanizmalar yoluyla yüksek düzeyde asetamiprid direncinin geliştirilebileceğini düşündürmektedir. Acetamipridile selekte edilen popülasyonda, imidacloprid, sulfoxaflor, beta-cyfluthrin ve tau-fluvanite karşı 1.54 ila 4.76 kat arasında duyarlılık azalması belirlenmiştir. Bununla birlikte, farklı genetik geçmişlere sahip M. persicae popülasyonlarında çapraz direncin belirlemek için daha fazla çalışmaya ihtiyaç bulunmaktadır

Acetamiprid Resistance in the Green Peach Aphid Myzuspersicae(Sulzer) (Hemiptera: Aphididae): Selection, Cross-Resistance, Biochemical and Molecular Resistance Mechanisms

Myzus persicae(Sulzer) (Hemiptera: Aphididae) is a polyphagous pest that causes significant losses in many crops. In the present study, the biochemical and molecular mechanism of acetamiprid resistance in a laboratory-selected M.persicae population of which the resistance ratios reached 57.5-fold were investigated. This study was conducted in the Isparta University of Applied Sciences, Agriculture Faculty, Department of Plant Protection in 2018 and 2020. Synergism, biochemical and molecular assays showed the absence of increased P450 activity in selected population. In addition, no point mutation in nicotinic acetylcholine receptor (nAChR), the target-site of neonicotinoids including acetamiprid, was detected in the selected population. These results suggests that high level of acetamiprid resistance might be developed via the mechanisms other than well-known mechanisms, such as increased P450 activity and target-site mutations. The population selected with acetamiprid showed decreased susceptibility to imidacloprid, sulfoxaflor, beta-cyfluthrin, and tau-fluvanite ranging from 1.54 to 4.76. Nonetheless, more studies are needed to support cross-resistance by M. persicae populations having different genetic backgrounds.

___

  • Abbink, J. (1991). The biochemistry of imidacloprid. Pflanzenschutz-Nachrichten Bayer,(44), 198-195.
  • Basit, M., Sayyed, A.H., Saleem, M.A. & Saeed, S. (2011). Cross-resistance, inheritance and stability of resistance to acetamiprid in cotton whitefly, Bemisia tabaci Genn (Hemiptera: Aleyrodidae). Crop Protection, 30(6), 705-712.
  • Bass, C., Puinean, A.M., Andrews, M., Cutler, P., Daniels, M., Elias, J., Paul, V.L., Crosswaite, A.J., Denholm, I., Field, L.M., Foster, S.P., Lind, R., Williamson M.S. & Slater, R. (2011). Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neuroscience, 12(1), 1-11.
  • Bass, C., Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foste,r S.P. Williamson, M.S. (2014). The evolutionof insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology, 51, 41-51.
  • Bass, C., Zimmer, C.T., Riveron, J.M., Wilding, C.S., Wondji, C.S., Kaussmann, M. & Nauen, R. (2013). Gene amplification and microsatellite polymorphism underlie a recent insect host shift. The Proceedings of the National Academy of Sciences, 110(48), 19460-19465.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2), 248-254.
  • Brault, V., Uzest, M., Monsion, B., Jacquot, E. & Blanc, S. (2010). Aphids as transport devices for plant viruses. Comptes Rendus Biologies, 333(6-7), 524-538.
  • Carletto, J., Martin, T., Vanlerberghe-Masuttia, F. & Brevault, T. (2010). Insecticide resistance traits differ among and within host races in Aphis gossypii. Pest Management Science, 66, 301–307.
  • Crossthwaite, A.J., Bigot, A., Camblin, P., Goodchild, J., Lind, R.J., Slater, R. & Maienfisch, P. (2017). The invertebrate pharmacology of insecticides acting at nicotinic acetylcholine receptors. Journal of Pest Science, 7, 17-19.
  • Cutler, P., Slater, R., Edmunds, A.J., Maienfisch, P., Hall, R.G., Earley, F.G. & Crossthwaite, A.J. (2013). Investigating the mode of action of sulfoxaflor: a fourth‐generation neonicotinoid. Pest Management Science, 69(5), 607-619.
  • Dedryver, C.A., Le Ralec, A. & Fabre, F. (2010). The conflicting relationships between aphids and men: a review of aphid damage and control strategies. Comptes Rendus Biologies, 333(6-7), 539-553.
  • Doumas, B.T. (1975). Standards for total serum protein assays—a collaborative study. Clinical Chemistry, 21 (8), 1159-1166.
  • Emden, H.F .& Harrington, R. (2017). Aphids as crop pests. CABI, London, UK, Nosworthy Way, Wallingford, Oxfordshire OX10 8DE, UK.
  • Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. Harris, K.F. & Maramorosch, K. (Eds.) (1977). Aphids as virus vectors. Elsevier.
  • Inak, E., Alpkent, Y.N., Çobanoğlu, S., Dermauw, W. & Van Leeuwen, T. (2019). Resistance incidence and presence of resistance mutations in populations of Tetranychus urticae from vegetable crops in Turkey. Experimental and Applied Acarology, 78(3), 343-360.
  • Jeschke, P., Nauen, R., Schindler, M. & Elbert, A. (2011). Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry, 59(7), 2897-2908.
  • Koo, H.N., An, J.J., Park, S.E., Kim, J.I. & Kim, G.H. (2014). Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Protection, 55, 91-97.
  • Li, Y., Xu, Z., Shi, L., Shen, G. & He, L. (2016). Insecticide resistance monitoring and metabolic mechanism study of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), in Chongqing, China. Pesticide Biochemistry and Physiology, 132, 21–28.
  • Livak, K.J.& Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408.
  • Mota-Sanchez, D.& Wise, J.C. (2022). The Arthropod Pesticide Resistance Database. Michigan State University. https://www.pesticideresistance.org/.
  • Nauen, R. & Denholm, I. (2005). Resistance of insect peststo neonicotinoid insecticides: current status and futureprospects. Archives of Insect Biochemistry and Physiology, 58 (4), 200-215.
  • James, C. & Perry, K.L. (2004). Transmission of plant viruses by aphid vectors. Molecular Plant Pathology, 5(5): 505-511.
  • Philippou, D.,. Field, L.M. & Moores, G.D. (2009). Metabolic enzyme(s) confer imidacloprid resistance in a clone of Myzus persicae (Sulzer) (Hemiptera: Aphididae) from Greece. Pest Management Science, 66, 390–395.
  • Puinean, A.M., Foster, S.P., Oliphant, L., Denholm, I., Field, L.M., Millar, N.S., Williamson, M.S., & Bass, C. (2010). Amplification of a cytochrome P450 gene is sssociated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genetics, 6(6). e1000999. doi:10.1371/journal.pgen.1000999.
  • Sial, M.U., Mehmood, K., Saeed, S., Husain, M., Rasool, K.G. & Aldawood, A.S. (2022). Neonicotinoid’s resistance monitoring, diagnostic mechanisms and cytochrome P450 expression in green peach aphid [Myzus persicae (Sulzer) (Hemiptera: Aphididae)]. Plos One, 17(1), e0261090. https://doi.org/10.1371/journal.pone.0261090.
  • Simon, J.C.& Peccoud, J. (2018). Rapid evolution of aphid pests in agricultural environments. Current Opinion in Insect Science, 26, 17-24.
  • Singh, K.S., Cordeiro, E.M., Troczka, B.J., Pym, A., Mackisack, J., Mathers, T.C., Bass, C. (2021). Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus persicae. Communications Biology, 4(1), 1-16.
  • Software, L. (2002). POLO-Plus, a user's guide to probit or logic analysis.LeOra Software, Berkeley, CA
  • Sparks, T.C. (2013). Insecticide discovery: an evaluation and analysis. Pesticide Biochemistry and Physiology, 107(1), 8-17.
  • Sparks, T.C.& Lorsbach, B.A. (2017). Perspectives on the agrochemical industry and agrochemical discovery. Pest Management Science, 73(4), 672-677.
  • Sparks, T.C., Crossthwaite, A. J., Nauen, R., Banba, S., Cordova, D., Earley, F. & Wessels, F.J. (2020). Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification-a tool for resistance management. Pesticide Biochemistry and Physiology,167,104587.
  • Sparks, T.C., Storer, N., Porter, A., Slater, R. & Nauen, R. (2021). Insecticide resistance management and industry: the origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme. Pest Management Science, 77(6), 2609-2619.
  • Sparks, T.C., Watson, G.B., Loso, M.R., Geng, C., Babcock, J.M. & Thomas, J.D. (2013). Sulfoxaflor and the sulfoximine insecticides: chemistry, mode of action and basis for efficacy on resistant insects. Pesticide Biochemistry and Physiology, 107(1), 1-7.
  • Stenersen, J. (2004). Nicotinoids and neonicotinoids chemical pesticides. Mode of Action and Toxicology, CRC Press, USA.
  • Tomizawa, M.& Casida, J.E. (2003). Selective toxicity of neonicotinoids attributable to specifıcity of insect and mammalian nicotinik receptors. Annual Review of Entomology, 48, 339–364.
  • Troczka, B.J., Singh, K.S., Zimmer, C.T., Vontas, J., Nauen, R., Hayward, A. & Bass, C. (2021). Molecular innovations underlying resistance to nicotine and neonicotinoids in the aphid Myzus persicae. Pest Management Science, 77(12), 5311-5320.
  • Ullah, F., Gula, H., Tariq, K., Desneuxe, N., Gaoa, X. & Songa, D. (2020). Functional analysis of cytochrome P450 genes linked with acetamiprid resistance in melon aphid, Aphis gossypii. Pesticide Biochemistry and Physiology, https://doi.org/10.1016/j.pestbp.2020.104687.
  • Wang, N.X., Watson, G.B., Loso, M.R. & Sparks, T.C. (2016). Molecular modeling of sulfoxaflor and neonicotinoid binding in insect nicotinic acetylcholine receptors: Impact of the Myzus β 1 R81T mutation. Pest Management Science, 72(8), 1467-1474.
  • Watson, G.B., Siebert, M.W., Wang, N.X., Loso, M.R. & Sparks, T.C. (2021). Sulfoxaflor–A sulfoximine insecticide: Review and analysis of mode of action, resistance and cross-resistance. Pesticide Biochemistry and Physiology,178, 104924.
  • Xu, X., Ding, Q., Wang, X., Wang, R., Ullah, F., Gao, X. & Song, D. (2022). V101I and R81T mutations in the nicotinic acetylcholine receptor β1 subunit are associated with neonicotinoid resistance in Myzus persicae. Pest Management Science, 78, 1500-1507.
  • Yamada, T., Takahashi ,H. & Hatano, R. (1999). A novel insecticide, acetamiprid. In: Yamamoto I., Casida J.E. (eds) Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67933-2_7.
Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1300-2910
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Tokat Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi Yayın Ofisi
Sayıdaki Diğer Makaleler

Doğal Havalandırmalı Serbest Duraklı Bir Süt Sığırı Ahırında Çevre Koşullarının Hesaplamalı Akışkanlar Dinamiği ile Modellenmesi

Erdem KÜÇÜKTOPCU, Selda UZAL SEYFİ, Muminah MUSTAQİMAH, Bilal CEMEK

Orta Karadeniz Bölgesinde Yetiştirilen Bazı Elma (Malus × domestica Borkh.) Çeşitlerinin Şeker ve Biyokimyasal İçerikleri

Mehmet Fikret BALTA, Orhan KARAKAYA, Mehmet YAMAN, Hüseyın KIRKAYA, İzzet YAMAN

Simmental İneklerde 305 Günlük Süt Verimini Etkileyen Bazı Çevresel Faktörlerin Belirlenmesine Yönelik Bir Karar Ağacı Modeli

Aslı AKILLI, Hülya ATIL, Çiğdem TAKMA

Karadeniz Bölgesi’ndeki Bazı Su Ürünleri İşleme Tesislerinde Çalışma Şartlarına Bağlı Tükenmişlik Faktörünün Belirlenmesi

Mehmet Emin ERDEM, Şennan YÜCEL, Selahattin ÇOBAN

Holstein İneklerinin 305-Gün Süt Verimini Etkileyen Faktörler İçin Path Analizi

Aslı AKILLI, Ertuğrul KUL, Hülya ATIL

Heavy Metals Accumulation in Feaces of Wildlife around Ogun River in Old Oyo National Park, Nigeria

Rilwan ADEWALE, Enoch OLABIYI, Oluseun AKİNSOROTAN, Waheed SALAMI, Oluseun BANJO

Yeşil Şeftali Yaprakbiti Myzus persicae'de (Sulzer) (Hemiptera: Aphididae) Acetamiprid Direnci: Seleksiyon, Çapraz Direnç, Biyokimyasal ve Moleküler Direnç Mekanizmaları

Gizem BERBER, Berke DEMİRCİ, Umut TOPRAK, Emre İNAK, Sibel YORULMAZ

Yeşilırmak Havzasında İki Farklı İndeksle Kuraklık Analizi

Mehmet Selim GEYİKLİ, Mehmet Ali HINIS, Kadri YÜREKLİ

İvesi Kuzularının Sütten Kesim Ağırlığını Etkileyen Bazı Çevresel Faktörlerin Tahmininde Sınıflandırma ve Regresyon Ağacı (CRT) Yönteminin Uygulanması

Hatice HIZLI, Çiğdem TAKMA, Şerife ERGÜL

Farklı organik gübre uygulanan topraklarda ıslanma-kuruma koşullarında CO2 Emisyonu ve CO2 Emisyonunun Nem, Sıcaklık ve H2O Emisyonu ile İlişkileri

Caner YERLİ, Talip ÇAKMAKCI, Ustun SAHİN