Yapay Sinir Ağları ile Yumurta Veriminin Tahmini

Sinir ağı, insan beyninin çalışmasına dayanan bilgi işlemenin matematiksel bir modeldir. Yapay sinir ağı (YSA), bir ağda birbirine bağlanan bir takım basit işlem öğelerinden oluşur. Bu çalışmada, yapay sinir ağı modeli kullanılarak yumurtacılarda bireysel olarak toplanan kuluçka dönemi, sıra, canlı ağırlık, eşeysel olgunluğa ulaşma yaşı ve eşeysel olgunluk ağırlığı ölçümlerine dayanılarak yumurta verimi tahminlenmiştir. İleri geribildirim algoritması tarafından eğitilen çok tabakalı yapay sinir ağı modeli, ileri beslemeli sinir ağı öğrenmesi için kullanılmıştır. Mevcut veri seti eğitim ve test seti olmak üzere iki kısma ayrılmıştır. Modelin iyi uyumunun belirlenmesinde belirleme katsayısı (R2 ), hata kareler ortalamasının karekökü (RMSE) ve ortalama mutlak sapma (MAD) kriterleri kullanılmıştır. Eğitim ve test seti için R2 değeri sırasıyla 0.80 ve 0.82 olarak tahminlenmiştir. Çalışmada düşük RMSE ve MAD değerleri elde edilmiştir. Uygulama sonucuna göre yumurta üretiminin tahmininde yapay sinir ağı kullanılabileceği belirlenmiştir.

Use of Neural Network Model to Predict of Egg Yield

A neural network is a mathematical model of information processing based on the work of the humanbrain. An artificial neural network (ANN) is composed of a number of simple processing elements connected togetherin a network. In this study, the egg yield was predicted based on the individually collected hatching period, line,body weight (BW), age at sexual maturity (ASM) and body weight at sexual maturity (BWSM) records of layersusing neural network model. A multilayer perceptron (MLP) ANN model trained by back propagation algorithm isdeveloped for feed-forward neural network learning. From the available data set, training and testing sets wereextracted. Goodness of fit of the model was determined with the coefficient of determination (R2), root mean squareerror (RMSE) and Mean Absolute Deviation (MAD) values. The R2 for training and test sets were estimated to be0.80 and 0.82, respectively. Lower RMSE and MAD values were obtained. The empirical result shows that neuralnetwork can be used for the prediction of egg yield.

___

  • Ahmadi H, Golian A (2008). Neural network model for egg production curve. Journal of Animal and Veterinary Advances, 7:1168-1170.
  • Amraei S, Mehdizadeh S A, Salari S (2017). Broiler weight estimation based on machine vision and artificial neural network. Britsh Poutry Science, 58(2): 200-205.
  • Cruz V A R, Savegnago R P, Schmidt G S, Ledur M C, Munari D P (2013). Neural networks on predict breeding values of egg production using phenotypic information. 10th World Congress of Genetics Applied to Livestock Production Proceedings.
  • Faridi A, France J, Golian A (2013). Neural network models for predicting early egg weight in broiler breeder hens. Journal of Applied Poultry Research, 22:1-8.
  • Fausett L (1994). Fundamentals of Neural Networks: Architectures, Algorithms and Applications, USA, Prentice Hall.
  • Felipe V P, Silva M A, Valente B D, Rosa G J (2015). Using multiple regression, Bayesian networks and artificial neural networks for prediction of total egg production in European quails based on earlier expressed phenotypes. Poultry Science, 94(4):772-80.
  • Ghazanfari S, Nobari K, Tahmoorespur, M (2011). Prediction of egg production using artificial neural network. Iranian Journal of Animal Science, 1(1): 11- 16.
  • Gianola D, Okut H, Weigel K A, Rosa G J M (2011). Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genetics, 12:87.
  • Lin H, Zhao J, Sun L, Chen Q, Zhou F (2011). Freshness measurement of eggs using near infrared (NIR) spectroscopy and multivariate data analysis. Innovative Food Science & Emerging Technologies, 12(2): 182- 186.
  • Mehdizadeh S A, Minae S, Hancock N H, Torshizi M A K (2014) An intelligent system for egg quality classification based on visible-infrared transmittance spectroscopy. Information Processing in Agriculture, 1(2): 105-114.
  • Savegnago R P, Nunes B N, Caetano S L, Ferraudo A S, Schimidt G S, Ledur M C, Munari D P (2011). Comparison of logistic and neural network models to fit the egg production curve of White Leghorn hens. Poultry Science, 90:2174-2188.
  • Sefat M Y, Borgaee A M, Beheshti B, Bakhoda H (2014). Application of Artificial Neural Network (ANN) for Modelling the Economic Efficiency of Broiler Production Units. Indian Journal of Science & Technology, 7(11):1820-1826.
  • Semsarian S, Nasab M P E, Zarehdaran S, Dehghani A A (2013). Prediction of the weight and number of eggs in Mazandaran native fowl using artificial neural network. International Journal of Advanced Biological and Biomedical Research, 5:532-537.
  • Tijen W F (1982). Yumurta sektöründe uygulamalı tavuk ıslahı. Uluslar arası Bilimsel Tavukçuluk Kongresi, 53- 71, Ankara.
  • Ünver Y, Oğuz İ, Akbaş Y (2000). Yumurtacı Damızlıklarda Kısmi Yumurta Verim Kayıtlarına Ait Parametre Tahminleri. Ege Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi.
  • Zhang Z, Wang Y, Fan G, Harrington P B (2007). A comparative study of multilayer perceptron neural networks for the identification of rhubarb samples. Phytochem. Anal. 18:109–114.