Karasal ekosistemde karbon yöetimi ve önemi

Son yıllarda yapılan çalısmalar, toprak karbon stoklarındaki hızlı oksidasyonun çevrede özellikle atmosferin kimyasında önemli degismelere neden oldugunu ortaya koymustur. Atmosferdeki sera gazlarından özellikle CO2’nin miktarındaki artıs, iklimi, bitkilerin fizyolojisini, topragın mikrobiyal aktivitesini ve organik maddenin olusumunu ve parçalanmasını önemli ölçüde etkiler. Topraklar atmosferdeki karbon için bir depo olabilecegi gibi kaynak da olabilir. Bir ekosistemde toprakta depolanan veya topraktan atmosfere salınan C miktarı, net ekosistem üretimi ile ekosistemden atmosfere salınan toplam hetetrofik solunuma baglıdır. Arazi kullanımına baglı olarak yogun toprak isleme, topraktaki organik C’un hızla oksidasyonuna neden olarak toprakların atmosferdeki CO2 için bir kaynak olmasına neden olur. Toprakların yıllardır yapılan geleneksel toprak isleme sonucu baslangıç karbonunun yaklasık % 50’si kaybolmus bulunmaktadır. Minimum sürüm ve sürümsüz tarım teknikleri organik karbonun oksidasyonunu azaltarak topragın net C kazanımına neden olur. Böylece çesitli yollarla atmosfere salınmıs olan C’nin yeniden toprakta depolanması saglanabilir. Yüksek organik karbon aynı zamanda topragın kalitesi ve verimligini de artırır. Böylece topraklar atmosferdeki karbonun depolanması için iyi bir kaynak görevi görür.

Carbon management and importance in terrestrial ecosystem

Recently, researchers indicated great changes in the chemistry of atmosphere due to faster oxidation of soil organic carbon. The increases of greenhouse gasses especially CO2 concentration can affect climate, plant physiology, microbial activity, soil organic matter, and decomposition. Soil can be a store or source for atmospheric CO2. The amount of soil organic carbon stored in the soil or release to the atmosphere depends on net ecosystem productivity and heterotrophic respiration. Soil management systems with intensive cultivation may stimulate oxidation of old organic matter, and create the soil a source of atmospheric CO2. Similarly, almost lost 50% of organic carbon was lost due to conventional tillage systems and cultivation. Minimum tillage and no-till practices reduce oxidation of soil organic carbon and result net C gain. Thus, atmospheric CO2 can be stored in soils using these management systems. The greater level of soil organic carbon can also increase soil quality and fertility. This indicates our soils can be a greater potential to store atmospheric CO2.

___

  • Batjes, NH. and Sombroek, W.G., 1997. Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biol., 3,161–173.
  • Bauer,A. and Black, A.L., 1994. Quantification of the effect of soil organic matter content on soil productivity. Soil Scie. Soc. Am. J. 58,185-193.
  • Buyanovsky, G.A., Kucera, C.L., and Wagner, G.H., 1987. Comparative analyses of carbon dynamics in native and cultivated ecosystems. Ecology, 68,2023- 2031.
  • DOE (U.S. Department of Energy). 2000. Carbon Sequestration Research and Development, DOE/SC/FE-1, Washington, D.C.
  • Follett, R.F., 2001. Soil management concepts and carbon sequestration in cropland soils. Soil Till. Res., 61,77-91.
  • IPCC (Intergovernmental Panel on Climate Change) 2001. Climate Change 2001: The scientific basis. Cambridge University Press, Cambridge, England.
  • Jacobs, G. K. and Graham, R.L., 2000. Carbon sequestration and bioenergy feedstock production seminar, Oak Ridge National Laboratory, Oak Ridge, TN.
  • Kern, J.S., and Johnson, M.G., 1993. Conservation tillage impact on national soil and atmospheric carbon levels. Soil Sci. Soc. Am. J., 57,200-210.
  • Koçyigit, R. and Rice, C.W., 2004. Carbon dynamics in tallgrass prairie and wheat ecosystems. Turk J. Agric. For., 28,141-153.
  • Lal, R., Kimble, J., and Follett, R., 1997. Soil quality management for carbon sequestration. In: Soil properties and their management for carbon sequestration. Edited R. Lal et al., United States Department of Agriculture, Natural Resources Conservation Services, National Soil Survey Center, Lincoln, NE.
  • Lal, R., 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science., 304,1623-1627.
  • Machado, S., Rhinhart, K., and Petrie, S. 2006. Long-term cropping system effects on carbon sequestration in eastern Oregon. J. Environ. Qual. 35, 1548-1553.
  • Mann, L.K., 1986. Changes in soil carbon storage after cultivation. Soil Sci., 142,279-288.
  • Marland, G., Fruit, K., and Sedio, R., 2001. Accounting for sequestered carbon: The question of permanence. Environ. Sci. Policy., 4,259-268.
  • Paul, E.A., Paustian, K.H., Elliot, E.T., and Cole, C.V., 1997. Soil organic matter in temperate agroecosystems: Long-term experiment in North America, CRC Press, Boca Raton, FL.
  • Potter, K.N., and Derner, J.D., 2006. Soil carbon pools in central Texas: Prairies, restored grasslands, and croplands. J. Soil water cons. 61, 124-128.
  • Post, W.M., and Kwon, K.C., 2000. Soil organic carbon sequestration and land use change: Processes and potential. Global Change Biol., 6,317-327.
  • Sainju, U.M., Lenssen, A., Caesar-Thonthat, T., and Waddell, J., 2006. Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation. J. Environ. Qual. 35: 1342-1347.
  • Sampson, R.N. and Scholes, R.J., 2000. Additional human-induced activities. In: Land use, land-use change, and forestry: A special report of the Intergovermental Panal on Climate Change. Edited R.T. Watson et al. IPCC.
  • Sanford, R.L., Saldarriaga, J., K.E. Clark, K.E., Uhe, C., Herrera, R., 1985. Amazon rainforest fires. Science, 227,53–55.
  • Sandra, H., Thomas, A., Jens, L., and Peter, W., 2008. The effects of tillage system on soil organic carbon under moist, cold-temperature conditions. Soil Till. Res. 98, 94-105.
  • Schlesinger, W., 2003. The Carbon Cycle: Human perturbations and potential management options. In: Global Climate Change: The Science, Economics and Politics. Edited J.M. Griffin, Edward Elgar, Cheltenham, UK.
  • Sotomayor, D. and Rice, C.W., 1999. Soil air carbon dioxide and nitrous oxide concentrations in profiles under tallgrass prairie and cultivation. J. Environ. Qual., 28,784-793.
Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1300-2910
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Tokat Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi Yayın Ofisi