Karadeniz Kalkan Balığı (Psetta Maxima Linnaeus, 1758) Yumurtası Yağ Asidi Kompozisyonunun Yumurta ve Larva Kalitesi Üzerine Etkisi

Bu çalışmada, Karadeniz kalkan balığında (Psetta maxima Linnaeus, 1758) yumurta kalitesini etkileyen faktörlerin belirlenmesi amaçlanmıştır. Yürütülen çalışmada 8 yaşında, 4 adet dişi Karadeniz kalkan balığının üreme döneminin farklı evrelerindeki yumurtaların, yağ asidi kompozisyonları, döllenme ve larva çıkış oranları karşılaştırılmıştır.Üreme sezonunun başı, ortası ve sonundaki yumurta partilerinin döllenme oranları sırasıyla, %54.91±5.90 , %60.36±1.61 , %71.69±1.56 olarak tespit edilmiştir. Larva çıkış oranları sırasıyla, %34.67, %42.22 ve %84.41 olarak belirlenmiştir. Döllenme ve larva çıkış oranları bakımından gruplar arasındaki farklar istatistiksel olarak önemli bulunmuştur (p<0.05). Toplam doymuş yağ asit (SAFA) miktarları sırasıyla, %23.65±0.44, %18.89±0.49 ve %22.77±0.56 olarak saptanmış, ilk ve orta partiler arasındaki farkın istatistiki olarak önemli olduğu belirlenmiştir (p<0.05). Toplam çoklu doymamış yağ asitleri (PUFA) miktarı sırasıyla %22.78±0.27, %20.44±0.30, %21.21±0.57 olarak tespit edilmiş ve partiler arasındaki farkın istatistiki olarak önemli olduğu (p<0.05) görülmüştür. Sonuç olarak partilerin yağ kompozisyonları arasındaki fark önemli olsa da bu parametre yumurta kalite kriteri olarak kullanılamayabilir. Ancak döllenme ve larva çıkış oranı sezon boyunca sürekli bir artış göstermiştir. Döllenme ve larva çıkış oranı sezon sonunda en yüksek olmasına rağmen yasama oranının sezon ortasında daha yüksek olduğu tespit edilmiştir. Bu sebeple, döllenme ve larva çıkış oranı yumurta kalite kriteri olarak değerlendirildiğinde sezon sonunda yumurtaların yüksek kalitedeki yumurtalar olduğu söylenebilir.

The Effect of Fatty Acid Composition of Egg on Egg and Larval Quality of Black Sea Turbot (Psetta Maxima Linnaeus, 1758)

In this study, determination of the parameters that affect the egg quality of Black Sea turbot (Psetta maxima) was aimed. Therefore the fatty acid compositions, fertilization and hatching rate and survival rate of the eggs of different spawning seasons from 8-year old 4 captive Black Sea turbot were compared. Fertilization rates of first, middle and the end of the spawning seasons were determined as 54.91±5.90%, 60.36±1.61%, 71.69±1.56%. Hatching rates were determined as 34.67%, 42.22% and 84.41%. The differences between the spawning seasons were significant in terms of fertilization and hatching rates (p<0.05). Total saturated fatty acids (SFA) were calculated as 23.65 ± 0.44%, 18.89 ± 0.49% and 22.77 ± 0.56% in first, middle and last of the spawning seasons and the difference between first and the middle seasons were significant (p<0.05). Total polyunsaturated fatty acids were determined as 22.78 ± 0.27%, 20.44 ± 0.30%, 21.21 ± 0.57%, respectively and the differences between season were determined as statistically significant (p<0.05). As a result, when the fertilization and hatching ratios were considered as egg quality criteria, the eggs taken in the last season may have high quality. 

___

  • AOAC, 1995. Association of Official Analytical Chemists, Arlington, VA
  • Aydın, İ., Polat, H., 2007. Karadeniz kalkan balığında yumurta inkübasyonu, Türkiye’de Kalkan Balığı Yetiştiriciliği Çalıştayı, 15-16 Kasım, Trabzon, Turkey. Aydın, İ. 2008. Predicting Egg Quality Based on Blastomere Morphology and Investigating of the Effect of Triploid Induction in Black Sea Turbot (Psetta maxima Linnaeus, 1758). (Master Thesis). Rize University, Graduate School of Applied and Natural Sciences Aquaculture Department, p.90, Rize-Turkey.
  • Bell, J.G., Castell, J.D., Tocher, D.R., McDonald, F.M., Sargent, J.R., 1995. Effects of Different Dietary Arachidonic Acid: Docosahexaenoic Acid Ratios on Phospholipid Fatty Acid Compositions and Prostaglandin Production in Juvenile Turbot, Scophthalmus maximus. Fish Physiology and Biochemistry. 14, 139-151.
  • Chereguini, O., Garcia de la Banda, I., Rasines, I., Fernandez, A., 1999. Artificial fertilization in turbot, Scopthalmus maximus (L.): different methods and determination of the optimal sperm-egg ratio. Aquaculture Research, 30, 319324.
  • Çiftçi, Y., Üstündağ, C., Erteken, A., Özongun, M., Ceylan, B., Haşimoğlu, A., Güneş, E., Yoseda, K.,Sakamoto, F., Nezaki, G., Hara, S., 2002. Karadeniz’de kalkan balığı (Psetta maxima) yavru üretim tekniği. (Report No: 2). Trabzon, Turkey, CFRI Press., 82 pp. Dantagnan, H., Bórquez, A. S., Valdebenito, I. N., Salgado, I. A., Serrano, E. A., Izquierdo, M. S., 2007. Lipid and fatty acid composition during embryo and larval development of puye Galaxias maculatus Jenyns, 1842, obtained from estuarine, freshwater and cultured populations. Journal of Fish Biology, 70, 770– 781. Evans, R.P., Parrish, C.C., Brown, J.A., Davis, P.J., 1996. Biochemical composition of eggs from repeat and first-time spawning captive Atlantic halibut (Hippoglossus hippoglossus). Aquaculture, 139, 139-149.
  • Falk-Peterson, S., Sargent, J.R., Fox, C., Falk-Peterson, I-B., Haug, T., Kjorsvik, E., 1989. Lipids in Atlantic halibut (Hippoglossus hippoglossus) eggs from planktonic samples in Northern Norway. Marine Biology, 101:553-556.
  • Furuita, H., Unuma, T., Nomura, K., Tanaka, H., Okuzawa, K., Sugita, T., Yamamoto, T., 2006. Lipid and fatty acid composition of eggs producing larvae with high survival rate in the Japanese Eel. Journal of Fish Biology, 69, 1178–1189. Howell, B.R., Child, A.R., Houghton, R.G., 1991. Fertilisation rate in anatural population of the common sole (Solea solea L.). ICES Journal of Marine Science, 48, 53–59.
  • Kjørsvik, E., Hoehne-Reitan, K., Reitan, K.I., 2003. Egg and larval quality criteria as predictive measure for juvenile production in turbot (Scophthalmus maximus L.). Aquaculture, 227: 9-20.
  • Koven, W.M., Tandler, A., Sklan, D., Kissil, G.W., 1993. The association of eicosapentaenoic and docosahexaenoic acids in the main phospholipids of different age Sparus aurata larvae with growth. Aquaculture, 116, 71-82.
  • Maslova, O.N., 2002. Problems and achiements in seed production of the Black Sea turbot in Russia. Turkish Journal of Fisheries and Aquatic Sciences, 2, 23-27.
  • McEvoy, L., Holland, D., McEvoy, J., 1993. Effect of spawning fast on lipid and fatty acid composition of eggs of captive turbot (Scophthalmus maximus L.). Aquaculture, 114:131-139.
  • McEvoy, L. (1984). Ovulatory rhythms and over-ripening of eggs in cultivated turbot, Scophthalmus maximus L. Journal of Fish Biology, 24, 437–448.
  • Nissling, A., Johansson, U., & Jacobsson, M. (2006). Effects of salinity and temperature conditions on the reproductive success of turbot (Scophthalmus maximus) in the Baltic Sea. Fisheries Research, 80, 230–238.
  • Özgür, M. E., 2009. Effect of Dietary Supplementation with n-3 Series Essential Fatty Acids on Quality of Egg, Embryo and Larvae in Rainbow Trout (Oncorhynchus mykiss W., 1792) Reproduction. (PhD. Thesis). Fırat University, Graduate School of Applied and Natural Sciences, p. 119, Elazığ-Turkey.
  • Pickova, J., Dutta, P.C., Larsson, P.O., Kiessling, A., 1997. Early embryonic cleavage pattern, hatching success, and egg-lipid fatty acid composition: comparison between two cod (Gadus morhua) stocks. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2410–2416.
  • Polat, H., 2011. The Embryonic Development of Black Sea Turbot (Psetta maxima Linnaeus, 1758) Eggs In Different Incubation Temperatures and Salinities. (Master Thesis). Süleyman Demirel University, Graduate School of Applied and Natural Sciences Aquaculture Department, p. 85, Isparta-Turkey.
  • Sargent, J.R., 1995. Origins and Functions of Egg Lipids: Nutritional Implications. In Bromage, N.R.& Roberts R.J (Eds), Broodstock Management and Egg and Larval Quality (pp 353-372). Great Britain, Wiley- Blackwell Press., 436 pp.
  • Silversand, C., Norberg, B., Haux, C., 1996. Fatty acid composition of ovulated eggs from wild and cultured turbot (Scophthalmus maximus) in relation to yolk and oil globule lipids. Marine Biology, 125, 269-278.
  • Takeuchi, T., 1997. Essential fatty acid requirements of aquatic animals with emphasis on fish larvae and fingerlings. Reviews in Fisheries Science, 5, 1–25. Tocher, D.R., 2010. Fatty Acid Requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41, 717-732.
  • Vazquez, R., Gonzalez, S., Rodriguez, A., Mourente, G., 1994. Biochemical composition and fatty acid content of fertilized eggs, yolk sac stage larva and first feeding larvae of the senegal sole (Solea senegelensis Kaup). Aquaculture, 119, 273-286.
  • Watanabe, T., 1993. Importance of docosahexaenoic acid in marine larval fish. Journal of World Aquaculture Society, 24, 495–501.
  • Wiegand, M. D., 1996. Utilization of yolk fatty acids by goldfish embryos and larvae. Fish Physiology and Biochemistry, 15(1):21-7.
  • Yanes- Roca, C., Rhody, N., Nystrom, M., Main, K.L., 2009. Effects of fatty acid composition and spawning season patterns on egg quality and larval survival in common snook (Centropomus undecimalis). Aquaculture, 287. 335-340.
  • Zhukinsky, V.N., Kim, D., 1981. Characteristics of age related variability in the composition of amino acids and lipids in mature and overripe eggs of the azov roach Rutilus rutilus and the bream Abramis brama. Journal of Ichthyology, 20, 121–132.
Gaziosmanpaşa Bilimsel Araştırma Dergisi-Cover
  • ISSN: 2146-8168
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2012
  • Yayıncı: Tokat Gaziosmanpaşa Üniversitesi