A Reclamation Model for Post-Mining Marble Quarries

A Reclamation Model for Post-Mining Marble Quarries

The damage caused by mining activities are usually environmental aesthetic disturbances (pitsand voids), degradation of the existing topographic structure, the pollution of underground andsurface water resources, the problems of dust in the living areas, the negativities in terms of lifeand property safety, the damages of the vital usage areas and the restriction of the living spaces.A methodology has been defined to determine the best future land use alternative for activemarble mining sites. GIS, multi-criteria decision making method and fuzzy logic methods areused together to create a land use suitability model as a decision support tool. The study islimited to marble mining activity in the case study of Antalya, Burdur, and Isparta regions(Turkey). The model results give the best option among the alternative land use classes,agricultural areas (A), afforestation (F), recreational area (R), industrial area (I) and landfill area(L) for the 715 marble mines in the study area.

___

  • FLMPA, “Federal land policy and management act USA”, U.S. Department of the Interior, Bureau of Land Management and Office of the Solicitor, Office of Public Affairs, Washington, D.C., 69-78, (1976).
  • SMCRA, “Surface mining control and reclamation act public law 95-87 USA”, December 31: 251-263, (1977).
  • AEPG, “Best practice environmental management in mining, rehabilitation and revegetation”, Australian Environment Protection Agency Department of Environment, Australia, Canberra, (1995).
  • Zolekar, R. B., Bhagat, V. S., “Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach”, Computers and Electronics in Agriculture, 118: 300-321, (2015).
  • Maryati, S., “Land Capability Evaluation of Reclamation Area in Indonesia Coal Mining Using LCLP Software”, Procedia Earth and Planetary Science, 6: 465-473, (2013).
  • Akinci, H., Ozalp, A. Y., Turgut, B., “Agricultural land use suitability analysis using GIS and AHP technique”, Computers and Electronics in Agriculture, 97: 71-82, (2013).
  • Fontana, V., Radtke, A., Fedrigotti, V. B., Tappeiner, U., Tasser, E., Zerbe, S., Buchholz, T., “Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis”, Ecological Economics, 93: 128-136, (2013).
  • Piran, H., Maleknia, R., Akbari, H., Soosani, J., Karami, O., “Site selection for local forest park using analytic hierarchy process and geographic information system (Case study: Badreh County)”, International Research Journal of Applied and Basic Sciences, 6(7): 930-935, (2013).
  • Dubovyk, O., Menz, G., Khamzina, “A land suitability assessment for afforestation with Elaeagnus angustifolia L. in degraded agricultural areas of the lower Amudarya river basin”, Land Degradation & Development, 27(8): 1831-1839, (2016).
  • Wang, J., Zhao, F., Yang, J., Li, X., “Mining Site Reclamation Planning Based on Land Suitability Analysis and Ecosystem Services Evaluation: A Case Study in Liaoning Province, China”, Sustainability, 9(6):890, (2017).
  • Mosadeghi, R., Warnken, J., Tomlinson, R., Mirfenderesk, H., “Comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning”, Computers, Environment and Urban Systems, 49: 54-65, (2015).
  • Akinci, H., Ozalp, A. Y., Turgut, B., “Agricultural land use suitability analysis using GIS and AHP technique”, Computers and Electronics in Agriculture, 97: 71-82, (2013).
  • Sobhanardakani, S., Seied, M. M., “Environmental Valuation of Industrial Estates Location Case Study: Kohgilouyeh & Boyerahmad Province”, International Journal of Agriculture and Crop Sciences, 5 (18): 2147-2162, (2013).
  • Liu, R., Zhang, K., Zhang, Z., Borthwick, A. G., “Land-use suitability analysis for urban development in Beijing”, Journal of Environmental Management, 145: 170-179, (2014).
  • Masoumi, I., Naraghi, S., Rashidi-Nejad, F., Masoumi, S., “Application of fuzzy multi-attribute decision-making to select and to rank the post-mining land-use”, Environmental Earth Sciences, 72(1): 221-231, (2014).
  • Palogos, I., Galetakis, M., Roumpos, C., Pavloudakis, F., “Selection of optimal land uses for the reclamation of surface mines by using evolutionary algorithms”, International Journal of Mining Science and Technology, 27(3): 491-498, (2017).
  • Salemi, M., Hejazi, R., “A GIS-Based suitability analysis for siting a solid waste in an urban area”, International Journal of Human Capital in Urban Management, 2(1): 57-68, (2017).
  • Isalou, A. A., Zamani, V., Shahmoradi, B., Alizadeh, H., “Landfill site selection using integrated fuzzy logic and analytic network process (F-ANP)”, Environmental Earth Sciences, 68(6): 1745-1755. (2013).
  • Eskandari, M., Homaee, M., Mahmoodi, S., Pazira, E., Van Genuchten, M. T., “Optimizing landfill site selection by using land classification maps”, Environmental Science and Pollution Research, 22(10): 7754-7765, (2015).
  • Rahmat, Z. G., Niri, M. V., Alavi, N., Goudarzi, G., Babaei, A. A., Baboli, Z., Hosseinzadeh, M., “Landfill site selection using GIS and AHP: A case study: Behbahan, Iran”, KSCE Journal of Civil Engineering, 21(1): 111-118, (2017).
  • Khan, D., Samadder, S. R., “A simplified multi-criteria evaluation model for landfill site ranking and selection based on AHP and GIS”, Journal of Environmental Engineering and Landscape Management, 23(4): 267-278, (2015).
  • Motlagh, Z. K., Sayadi, M. H., “Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran)”, Waste Management, 46: 322-337, (2015).
  • Eskandari, M., Homaee, M., Mahmoodi, S., Pazira, E., Van Genuchten, M. T., “Optimizing landfill site selection by using land classification maps”, Environmental Science and Pollution Research, 22(10): 7754-7765, (2015).
  • Malczewski, N., “GIS and Multcriteria Decision Analysis”, Wiley, New York, (1999).
  • Hwang, C. L., Yoon, K., “Multiple criteria decision making”, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, (1981).
  • Greene, R., Devillers, R., Lutjer, J. E., Eddy, B. G., “GIS Based Multiple Criteria Decision Analysis”, Geography Compass, 56: 412-432, (2011).
  • Saaty, T. L., “Decision making with Dependence and Feedback: The Analytical Network Process”, RWS Publications, Pittsburg, (1996).
  • McBratney, A. B., Odeh, I. O. A., “Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions”, Geoderma, 77: 85-113, (1997).
  • Novak, V., “Fuzzy logic: Applications to natural language”, in: Shapiro, S.C.(ed) Encyclopedia of Artificial Intelligence (Second edition), New York: John Wiley & Sons, (1992).
  • Wu, F., “Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system”, Journal of Environmental Management, 53, 293–308, (1998).
  • Rickel, B. W., Anderson, B., Pope, R., “Using fuzzy systems, object-oriented programming and GIS to evaluate wildlife habitat”, AI Applications: 12, 31–40, (1998).
  • TUIK, “Provinces, the migration, net migration and migration rate, general population censuses, Research Results”, Turkish Statistical Institute, Ankara, (2019).
  • MTA, General Directorate of Mineral Research and Exploration, http://www.mta.gov.tr/v3.0/bilgimerkezi/maden-rezervleri, (2013).
  • ITC, Trade statistics for international business development, https://trademap.org/Index.aspx, (2016).
  • MAPEG, General Directorate of Mining and Oil works, http://www.migem.gov.tr/istatistik.aspx, (2018).