Investigation of Structural, Electronic, Optic and Elastic Properties of Perovskite RbGeCl3 Crystal: A First Principles Study
Investigation of Structural, Electronic, Optic and Elastic Properties of Perovskite RbGeCl3 Crystal: A First Principles Study
Some physical properties of RbGeCl3 crystal are investigated with ABINIT computer programwithin the generalized gradient approximation (GGA) and the local density approximation(LDA), using density functional theory (DFT). We studied the geometry optimization, electronicband structure, electron density of states, optical properties such as the dielectric functions,reflectivity, refractive index, extinction coefficients, energy-loss functions for volume, theeffective number of valence electrons per unit cell and elastic properties of RbGeCl3. Thecalculated electronic band structure shows that the RbGeCl3 has a direct band gap and thiscompound is a semiconducting material with a wide bandgap.
___
- Zhang, W., Eperon, G. E. and Snaith, H. J. “Metal halide perovskites for energy applications”, Nature
Energy, 1: 16048-8, (2016).
- Stoumpos, C. C. and Kanatzidis, M. G. “Halide Perovskites: Poor Man's High‐ Performance
Semiconductors”, Advanced Materials, 28: 5778-5793, (2016).
- Chen, Q., De Marco, N., Yang, Y., Song, T. B., Chen, C. C., Zhao, H., Hong, Z., Zhou, H. and Yang,
Y. “Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic
applications”, Nano Today, 10: 355-396, (2015).
- Chen, S. and Shi, G. “Two‐ Dimensional Materials for Halide Perovskite‐ Based Optoelectronic
Devices” Advanced Materials, 29: 1605448-31, (2017).
- McMurdie, H. F., de Groot, J., Morris, M. and Swanson, H. E. “Crystallography and preparation of
some ABCl3 compounds”, Journal of Research of the National Bureau of Standards-A. Physics and
Chemistry, 73A: 621-626, (1969).
- Kumawat, N. K., Tripathi, M. N., Waghmare, U. and Kabra, D. “Structural, optical, and electronic
properties of wide bandgap perovskites: experimental and theoretical Investigations”, The Journal of
Physical Chemistry, 120: 3917-3923, (2016).
- Zhao, Y. and Zhu, K. “Organic–inorganic hybrid lead halide perovskites for optoelectronic and
electronic applications”, Chemical Society Reviews, 45: 655-689, (2016).
- Roghabadi, F. A., Ahmadi, V. and Aghmiuni, K. O. “Organic–Inorganic Halide Perovskite Formation:
In Situ Dissociation of Cation Halide and Metal Halide Complexes during Crystal Formation”, Journal
of Physical Chemistry C, 121: 13532-13538, (2017).
- Veldhuis, S. A., Boix, P. P., Yantara, N., Li, M., Sum, T. C., Mathews, N. and Mhaisalkar, S. G.
“Perovskite materials for light‐ emitting diodes and lasers”, Advanced Materials, 28: 6804-6834,
(2016).
- Adinolfi, V.,Peng, W., Walters, G., Bakr, O. M. and Sargent, E. H. “The Electrical and Optical
Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance”, Advanced
Materials, 30: 1700764-13, (2018).
- Tang, L. C., Liu, L. Q., Chang, Y. C., Yao, J.H., Huang, J.Y. and Chang, C. S. “Characterization of
Nonlinear Optical Properties of Crystal RbGeCl3· x (H2O) in Infrared Region”, Japanese Journal of
Applied Physics, 48: 082001-7, (2009).
- Giordmaine, J. A. and Miller, R. C. “Tunable Coherent Parametric Oscillation in LiNbO3 at Optical
Frequencies”, Physical Review Letters, 14: 973-975, (1965).
- Dmitriev, V. G., Gurzadyan, G. G. and Nikogosyan, D. N., Handbook of Nonlinear Optical Crystals,
Springer Press, Berlin. p. 100, (1999).
- Yuan, C.,Li, X., Semin, S., Feng, Y., Rasing, T. and Xu J. “Chiral Lead Halide Perovskite Nanowires
for Second-Order Nonlinear Optics”, Nano Letters, 18: 5411-5417 , (2018).
- Messer, D,. “Die Kristallstruktur yon RbGeCl3/The Crystal Structure of RbGeCl3”, Zeitschrift für
Naturforschung B, 33b: 366-369 ,(1978).
- Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.M., Sindie, L., Verstrate,
M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J. Y. and Allan, D. C.
“First-principles computation of material properties: the ABINIT software Project”, Computational
Materials Science, 25: 478-492, (2002).
- Fuchs, M. and Scheffler, M. “Ab initio pseudopotentials for electronic structure calculations of polyatomic
systems using density-functional theory”, Computer Physics Communications, 119: 67-98,
(1999).
- Troullier, N. and Martins, J. L. “Efficient pseudopotentials for plane-wave calculations”, Physical
Review B, 43: 1993-2006, (1991).
- Payne, M.C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannopoulos, J. D. “Iterative minimization
techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”,
Reviews of Modern Physics, 64: 1045-1098, (1992).
- Khon, W. and Sham, L. J. “Self-Consistent Equations Including Exchange and Correlation Effects”,
Physical Review, 140:A1133-A1138, (1965).
- Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J. and Fiolhais,
C. “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation
for exchange and correlation”, Physical Review B, 46: 6671-6687, (1992).
- Perdew, J. P., Burke, K. and Ernzerhof, M. “Generalized Gradient Approximation Made Simple”,
Physical Review Letters, 77: 3865-3868, (1996).
- Monkhorst, J.H. and Pack, J.D. “Special points for Brillouin-zone integrations”, Physical Review B,
13: 5188-5192, (1976).
- Internet: Materials Project. https://materialsproject.org/materials/mp-27369, (2018).
- Horn, R. A., and Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge. p. 40 and
404, (1990).
- Teodorescu, P. P., Treatise on Classical Elasticity, Theory and Related Problems, Springer Press,
Berlin. p. 29,(2010).
- Maksud, M.,Yoo, J., Harris, C. T., Palapati, N. K. R. and Subramanian, A., “Young’s modulus of [111]
germanium nanowires”, APL Materials, 3: 116101, (2015).
- Internet: Technical data for Rubidium. http://periodictable.com/Elements/037/data.html , (2019).
- Internet: Technical data for Chlorine. http://periodictable.com/Elements/017/data.html , (2019).