A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks

Design and investigation of a polarization-insensitive nine-band tunable metamaterial absorber at THz frequencies with equal to or more than 90% absorption ratio in all of the bands are reported. The tunable metamaterial absorber consists of four isosceles triangle patches with four U-shaped cut paths on top of an indium antimonide substrate, which has a fully metallic ground plane at the backside. Numerical analyses show that the metamaterial absorber has wide-angle characteristics under transverse-electric and transverse-magnetic modes. The permittivity of indium antimonide is highly dependent on temperature variations due to its temperature-dependent intrinsic carrier density, leading to shift of nine absorption peak frequencies upon change of environment temperature. Broadband switching of nine absorption peak frequencies with maximum 71.5% shift ratio between 190 K and 230 K is obtained. Temperature sensing performance of the metamaterial absorber is further evaluated and the sensitivities are found to be 11.5 GHz/K, 9.2 GHz/K, 8.3 GHz/K, 7.6 GHz/K, 7.0 GHz/K, 6.2 GHz/K, 5.3 GHz/K, 4.5 GHz/K and 4.2 GHz/K, from the first to ninth absorption band, respectively. Therefore, the proposed nine-band metamaterial absorber sensor has great potential in sensitive and accurate temperature measurement, absorption tuning in optoelectronic applications and as frequency selective thermal emitters.

___

  • 1) Sievenpiper, D., Zhang, L., Jimenez Broas, R.F., Alexopolous, N.G. and Yablonovitch, E., “High-impedance electromagnetic surfaces with a forbidden frequency band”, IEEE Trans. Microw. Theory Tech., 47(11):2059–2074 (1999). doi: 10.1109/22.798001
  • 2) Simovski, C.R., Maagt, P. de and Melchakova, I.V., “High-impedance surfaces having stable resonance with respect to polarization and incidence angle”, IEEE Trans. Antennas Propag. 53(3):908–914 (2005). doi: 10.1109/TAP.2004.842598
  • 3) Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R. and Padilla, W.J., “A perfect metamaterial absorber”, Phys. Rev. Lett. 100, 207402 (2008). doi: 10.1103/PhysRevLett.100.207402
  • 4) Watts, C.M., Liu, X. and Padilla, W.J., “Metamaterial electromagnetic wave absorbers”, Adv. Mater. 24:OP98–OP120 (2012). doi: 10.1002/adma.201200674
  • 5) Chen, H-T., Yang, H., Singh, R., O’Hara, J.F., Azad, A.K., Trugman, S.A., Jia, Q.X. and Taylor, A.J., “Tuning the resonance in high-temperature superconducting terahertz metamaterials”, Phys. Rev. Lett. 105(24):247402 (2010). doi: 10.1103/PhysRevLett.105.247402
  • 6) Bossard, J.A., Lin, L., Yun, S., Liu, L., Werner, D.H. and Mayer, T.S., “Near-ideal optical metamaterial absorbers with super-octave bandwidth”, ACS Nano 8(2):1517–1524 (2014). doi: 10.1021/nn4057148
  • 7) Liu, Z., Li, Y., Zhang, J., Huang, Y., Li, Z., Pei, J., Fang, B., Wang, X. and Xiao, H., “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films”, J. Phys. D: Appl. Phys. 50:385104 (2017). doi: 10.1088/1361–6463/aa8338
  • 8) Kadlec, C., Skoromets, V., Kadlec, F., Němec, H., Chen, H.-T., Jurka, V., Hruška, K. and Kužel, P., “Electric-field tuning of a planar terahertz metamaterial based on strained SrTiO3 layers”, J. Phys. D: Appl. Phys. 51:054001 (2018). doi: 10.1088/1361-6463/aaa315
  • 9) Shen, X., Yang, Y., Zang, Y., Gu, J., Han, J., Zhang, W. and Cui, T.J. “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation”, Appl. Phys. Lett. 101: 154102 (2012). doi: 10.1063/1.4757879
  • 10) Dong, B., Ma, H., Wang, J., Shi, P., Li, J., Zhu, L., Lou, J., Feng, M. and Qu, S., “A thermally tunable THz metamaterial frequency-selective surface based on barium strontium titanate thin film”, J. Phys. D: Appl. Phys. 52:045301 (2019). doi: 10.1088/1361-6463/aaebef
  • 11) Ding, F., Cui, Y., Ge, X., Jin, Y. and He, S., “Ultra-broadband microwave metamaterial absorber”, Appl. Phys. Lett. 100:103506 (2012). doi: 10.1063/1.3692178
  • 12) Zhu, J., Ma, Z., Sun, W., Ding, F., He, Q., Zhou, L. and Ma, Y., “Ultra-broadband terahertz metamaterial absorber”, Appl. Phys. Lett. 105:021102 (2014). doi: 10.1063/1.4890521
  • 13) Ye, Q., Liu, Y., Lin, H., Li, M., Yang, H., “Multi-band metamaterial absorber made of multi-gap SRRs structure”, Appl. Phys. A: Mater. Sci. Process 107:155 (2012). doi: 10.1007/s00339-012-6796-7
  • 14) He, Y., Wu, Q. and Yan, S., “Multi-band terahertz absorber at 0.1–1 THz frequency based on ultra-thin metamaterial”, Plasmonics 14, 1303–1310 (2019). doi: 10.1007/s11468-019-00936-7
  • 15) Sood, D. and Tripathi, C.C., “Quad band electric field-driven LC resonator based polarisation-insensitive metamaterial absorber”, IET Microw. Antennas Propag. 12(4):588–594 (2017). doi: 10.1049/iet-map.2017.0908
  • 16) Huang, X., Lu, C., Rong, C., Hu, Z., and Liu, M., “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances”, IEEE Photonics J. 10, 6:4600811 (2018). doi: 10.1109/JPHOT.2018.2878455
  • 17) Padilla, W.J., Taylor, A. J., Highstrete, C., Lee, M. and Averitt, R.D., “Dynamical electric and magnetic metamaterial response at terahertz frequencies”, Phys. Rev. Lett. 96:107401 (2006). doi: 10.1103/PhysRevLett.96.107401
  • 18) Chen, H.-T., Padilla, W.J., Zide, J.M.O., Gossard, A.C., Taylor, A.J. and Averitt, R.D., “Active terahertz metamaterial devices”, Nature 444: 597–600 (2006). doi: 10.1038/nature05343
  • 19) Ricci, M.C., Xu, H., Prozorov, R., Zhuravel, A.P., Ustinov, A.V. and Anlage, S.M., “Tunability of superconducting metamaterials”, IEEE Trans. Appl. Supercond. 17(2):918–921 (2007). doi: 10.1109/TASC.2007.898535
  • 20) Fedotov, V.A., Tsiatmas, A., Shi, J.H., Buckingham, R., Groot, P. de, Chen, Y., Wang, S. and Zheludev, N.I., “Temperature control of Fano resonances and transmission in superconducting metamaterials”, Opt. Express 18(9):9015–9019 (2010). doi: 10.1364/OE.18.009015
  • 21) Jin, B.B., Zhang, C., Engelbrecht, S., Pimenov, A., Wu, J., Xu, Q., Cao, C., Chen, J., Xu, W., Kang, L. and Wu, P., “Low loss and magnetic field tunable superconducting terahertz metamaterial”, Opt Express 18(16):17504–17509 (2010). doi: 10.1364/OE.18.017504
  • 22) Singh, R., Xiong, J., Azad, A.K., Yang, H., Trugman, S.A., Jia, Q.X., Taylor, A.J. and Chen, H.T., “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials”, Nanophotonics, 1:117–123 (2012). doi: 10.1515/nanoph-2012-0007
  • 23) Srivastava, Y.K., Manjappa, M., Cong, L., Krishnamoorthy, H.N.S., Savinov, V., Pitchappa, P. and Singh, R., “A superconducting dual-channel photonic switch”, Adv. Mater. 30: 1801257 (2018). doi: 10.1002/adma.201801257
  • 24) Zhao, J., Cheng, Q., Chen, J., Qi, M.Q., Jiang, W.X. and Cui, T.J., “A tunable metamaterial absorber using varactor diodes”, New J. Phys. 15:043049 (2013). doi:10.1088/1367-2630/15/4/043049
  • 25) Yuan, H., Zhu, B.O. and Yeng, F., “A frequency and bandwidth tunable metamaterial absorber in X-band”, J. Appl. Phys. 117:173103 (2015). doi: 10.1063/1.4919753
  • 26) Hu, F., Qian, Y., Li, Z., Niu, J., Nie, K., Xiong, X., Zhang, W. and Peng, Z., “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array”, J. Opt. 15, 055101 (2013). doi: 10.1088/2040-8978/15/5/055101
  • 27) Yao, G., Ling, F., Yue, J., Luo, C., Ji, J. and Yao, J., “Dual-band tunable perfect metamaterial absorber in the THz range”, Opt. Express 24(2):1518–1527 (2016). doi: 10.1364/OE.24.001518
  • 28) Mulla, B. and Sabah, C., “Improvement of multiband absorption with different technics (graphene, ITO, and hole) for metamaterial absorber at optical frequencies”, J. Nanophotonics 12(4):046017 (2018). doi: 10.1117/1.JNP.12.046017
  • 29) Zhou, Q., Liu, P., Bian, L.-A., Cai, X. and Liu, H., “Multi-band terahertz absorber exploiting graphene metamaterial”, Opt. Mater. Express 8(9):2928–2940 (2018). doi: 10.1364/OME.8.002928
  • 30) Liu, C., Qi, L. and Zhang, X., “Broadband graphene-based metamaterial absorbers”, AIP Adv. 8:015301 (2018). doi: 10.1063/1.4998321
  • 31) Xu, Z., Wu, D., Liu, Y., Liu, C., Yu, Z., Yu, L. and Ye, H., “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons”, Nanoscale Res. Lett. 13:143 (2018). doi: 10.1186/s11671-018-2552-z
  • 32) Lin , H., Sturmberg, B.C.P., Lin, K.-T., Yang, Y., Zheng, X., Chong, T.K., Sterke, C.M. and Jia, B., “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light”, Nat. Photonics 13:270–276 (2019). doi: 10.10138/s41566-019-0389-3.
  • 33) Ling, K., Yoo, M., Su, W., Kim, K., Cook, B., Tentzeris, M.M. and Lim, S., “Microfluidic tunable inkjet-printed metamaterial absorber on paper”, Opt. Express 23:110–120 (2015). doi: 10.1364/OE.23.000110
  • 34) Shrekenhamer, D., Chen, W.C. and Padilla, W.J., “Liquid crystal tunable metamaterial absorber”, Phys. Rev. Lett. 110(17):177403 (2013). doi: 10.1103/PhysRevLett.110.177403
  • 35) Isic, G., Vasic, B., Zografopoulos, D.C., Beccherelli, R. and Gajic, R., “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals”, Phys. Rev. Appl. 3:064007 (2015). doi: 10.1103/PhysRevApplied.3.064007
  • 36) Luu, D.H., Dung, N.V., Hai, P., Giang, T.T. and Lam, V.D., “Switchable and tunable metamaterial absorber in THz frequencies”, J. Sci.: Adv. Mater. Dev. 1:65–68 (2016). doi: 10.1016/j.jsamd.2016.04.002
  • 37) Bian, Y., Wu, C., Li, H. and Zhai, J., “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film”, Appl. Phys. Lett. 104, 042906 (2014). doi: 10.1063/1.4863669
  • 38) Song, Z.Y., Wang, K., Li, J.W. and Liu, Q.H., “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials”, Opt. Exp. 26(6):7148–7154 (2018). doi: 10.1364/OE.26.007148
  • 39) Li, D., Huang, H., Xia, H., Zengb, J., Li, H. and Xie, D., “Temperature-dependent tunable terahertz metamaterial absorber for the application of light modulator”, Results Phys. 11:659–664 (2018). doi: 10.1016/j.rinp.2018.10.014
  • 40) Wang, B.-X. and Wang, G.-Z., “Temperature tunable metamaterial absorber at THz frequencies”, J. Mater. Sci.: Mater. Electron. 28:8487–8493 (2017). doi: 10.1007/s10854-017-6570-x
  • 41) Zou, H. and Cheng, Y., “Design of a six-band terahertz metamaterial absorber for temperature sensing application”, Opt. Mater. 88:674–679 (2019). doi: 10.1016/j.optmat.2019.01.002
  • 42) Appasani, B., “An octaband temperature tunable terahertz metamaterial absorber using tapered triangular structures”, Prog. Electromagn. Res. Lett. 95, 9–16 (2021). doi: 10.2528/PIERL20101501 43) Cunningham, R.W. and Gruber, J.B., “Intrinsic concentration and heavy-hole mass in InSb”, J. Appl. Phys. 41(4):1804–1809 (1970). doi: 10.1063/1.1659107
  • 44) Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W. and Singh, R., “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces”, Appl. Phys. Lett. 106:031107 (2015). doi: 10.1063/1.4906109
  • 45) Huang, X., He, W., Yang, F., Ran, J., Yang, Q. and Xie, S., “Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime”, Opt. Mater. Express 9(3):1377-1385 (2019). doi: 10.1364/OME.9.001377
  • 46) Li, W., Kuang, D., Fan, F., Chang, S. and Lin, L., “Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure”, Appl. Opt. 51(29):7098–7102 (2012). doi: 10.1364/AO.51.007098
  • 47) Appasani, B., “Temperature tunable seven band terahertz metamaterial absorber using slotted flower–shaped resonator on an InSb substrate”, Plasmonics (2021). doi: 10.1007/s11468-020-01329-x