Optical Properties of Gaas/Alxga1-xas Superlattice Under E-Field for Quantum Cascade Laser Application

Optical properties of GaAs/AlxGa1-xAs superlattice are studied dependent on quantum well thickness of gain region and doping density of injector layers underperformed electric field. Conduction band alignment of the superlattice is obtained by using effective mass approximation. 1d-Schrodinger formula is solved by using FDM. Intersubband transition energies, linear (nonlinear and total) absorption coefficients and linear (nonlinear and total) refractive index changes are plotted under applied electric field intensity. Intersubband transition energy of electron from second excited state to first excited state shows 147 meV. It is found that -45 kV/cm electric field intensity and 5 nm layer thickness of last quantum well of the gain region are the best values for studied structure. After that, linear absorption coefficient is investigated dependent on carrier number in the injector region under electric field. It is found that carrier number over 5 ? 1016 ??−2 can causes huge internal absorption of the radiative emission obtained in gain region due to increase in linear absorption coefficient by factor 10. As a conclusion, total absorption coefficient and total refractive index change are calculated for optimized parameters.

___

  • [1] Yoffe, A. D., “Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems”, Ad. Phys., 50: 1, (2001).
  • [2] Vali, M., Dideban, D., and Moezi, N., “A scheme for a topological insulator field effect transistor”, Physica E, 69: 360, (2015).
  • [3] Kuo, D. M. T., Fang, A., Chang, Y. C., “Theoretical modeling of dark current and photo-response for quantum well and quantum dot infrared detectors”, Inf. Phys. Technol., 42: 433, (2001).
  • [4] Zheng, J., Zhang, Y., Li L., Tang, S., Shi, Y., and Chen, X., “Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology”, Opt. Laser Technol., 67: 38., (2015).
  • [5] Karabulut, I., Mora-Ramos, M.E. and Duque, C.A., “Nonlinear optical rectification and optical absorption in GaAs/Ga1–xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure”, J. Lumin. 131: 1502, (2011).
  • [6] Martinez-Orozco, J.C., Mora-Ramos, M.E. and Duque, C.A., “Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure”, J. Lumin., 132: 449, (2012).
  • [7] Dakhlaoui, H., Almansour, S. and Algrafy, E., “Effect of Si δ-doped layer position on optical absorption in GaAs quantum well under hydrostatic pressure”, Superlatt. Microstruct., 77: 196, (2015).
  • [8] Tai, V. V. and Khanh, N. Q., “Transport properties of the two-dimensional electron gas in wide AlP quantum wells including temperature and correlation effects”, Physica E, 67: 84, (2015).
  • [9] Niculescu, E.C., Eseanu, N., and Radu, A., “Heterointerface effects on the nonlinear optical rectification in a laser-dressed graded quantum well”, Opt. Commun., 294: 276., (2013).
  • [10] Gurnick, M.K., and Detemple, T.A., “Two photon optical nonlinearities in a resonant quantum well system”, IEEE J. Quant. Electron. QE 19: 791, (1983).
  • [11] Alaydin, B.O., Ozturk, E. and Elagoz, S., “Interband transitions dependent on indium concentration in Ga1−xInxAs/GaAs asymmetric triple quantum wells”, International Journal of Modern Physics B 32: 5, (2018).
  • [12] Nagahama, S., Iwasa, N., Senoh, M., Matsushita, T., Sugimoto, Y., Kiyoku, H., Kozaki, T., Sano, M., Matsumura, H., Umemoto, H., Chocho, K. and Mukai, T., Jpn. J. Appl. Phys., 39: L647-L650, (2000).
  • [13] Li, D., Sun, X., Song, H., Li, Z., Chen, Y., Jiang, H. and Miao, G., “Realization of a High‐Performance GaN UV Detector by Nanoplasmonic Enhancement”, Adv. Mater., 24: 845–849, (2012).
  • [14] Bai, Y., Bandyopadhyay, N., Tsao, S., Selcuk, E., Slivken, S. and Razeghi, M., “Highly temperature insensitive quantum cascade lasers”, Appl. Phys. Lett., 97: 251104, (2010).
  • [15] Evans, A., Yu, J.S., Slivken, S., and Razeghi, M., “Continuous-wave operation of λ∼4.8μm quantum-cascade lasers at room temperature”, Appl. Phys. Lett., 85: 2166, (2004).
  • [16] Sirtori, C., Kruck, P., Barbieri, S., Collot, P., Nagle, J., Beck, M., Faist, J. and Oesterle, U., “GaAs/AlxGa1−xAs quantum cascade lasers”, Appl. Phys. Lett., 73:3486, (1998).
  • [17] Razeghi, M. and Nguyen, B., “Band gap tunability of Type-II Antimonide-based superlattices”, Physics Procedia, 3: 1207, (2003).
  • [18] Shi, J. and Pan, S., “Calculation of linear and nonlinear intersubband optical absorptions in a superlattice with a step-well basis”, Superlattices and Microstructures, 17: 1, (1995).
  • [19] Radu, A., “Laser-dressing of electronic quantum states in graded semiconductor nanostructures”, Solid State Commun., 157: 11, (2013).
  • [20] Karimi, M.J. and Vafaei, H., “Second-order nonlinear optical properties in a strained InGaN/AlGaN quantum well under the intense laser field”, Superlatt. Microstruct., 78: 1, (2015).
  • [21] Zeiri, N., Sfina, N., Nasrallah S.A.B. and Said M., “Intersubband resonant enhancement of the nonlinear optical properties in asymmetric (CdS/ZnSe)/X-BeTe based quantum wells”, Opt. Mater., 35: 875, (2013).
  • [22] Keshavarz, A. and Karimi, M., “Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells”, Phys. Lett., A 374:2675, (2010).
  • [23] Rodriguez-Magdaleno, K., Martinez-Orozco, J., Rodriguez-Vargas, I., Mora-Ramos, M. and Duque, C.A., “Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field”, J. Lumin., 147: 77, (2014).
  • [24] Safarpour, G., Izadi, M., Novzari, M. and Yazdanpanahi, S., “Anisotropy effect on the linear and nonlinear optical properties of a lased dressed donor impurity in a GaAs/GaAlAs nanowire superlattice”, Superlatt. Microstruct., 75: 936, (2014).
  • [25] Duque, C. M., Morales, A., Mora-Ramos, M. and Duque, C. A., “Exciton-related nonlinear optical response and photoluminescence in dilute nitrogen cylindrically shaped quantum dots”, J. Lumin., 154: 559, (2014).
  • [26] Ungan, F., Pal, S., Mora-Ramos, M.E. and Martinez-Orozco, J.C., “The electron-related optical responses for the square tangent quantum well: Role of applied external fields”, Optik, 188: 12-18, (2019).
  • [27] Ungan, F., Pal S., Bahar, M.K. and Mora-Ramos, M.E., “Nonlinear optical properties of morse quantum well modulated by THz laser fields”, Physica E: Low-dimensional Systems and Nanostructures, 113: 86-91, (2019).
  • [28] Alaydin, B. O., “Effect of high bandgap AlAs quantum barrier on electronic and optical properties of In0.70Ga0.30As/Al0.60In0.40As superlattice under applied electric field for laser and detector applications”, International Journal of Modern Physics B, 2150027, (2020).
  • [29] Karabulut, I. and Duque, C. A., “Nonlinear optical rectification and optical absorption in GaAs–Ga1-xAlxAs double quantum wells under applied electric and magnetic fields”, Physica E, 43: 1405, (2011).
  • [30] Chen, B., Guo, K., Wang, R., Zhang, Z. and Liu, Z., “Linear and nonlinear intersubband optical absorption in double triangular quantum wells”, Solid State Communications, 149: 310–314, (2009).
  • [31] Zhang, L., Yu, Z., Yao, W., Liu, Y. and Ye, H., “Linear and nonlinear optical properties of strained GaN/AlN quantum dots: Effects of impurities, radii of QDs, and the incident optical intensity”, Superlattices and Microstructures, 48: 434–441, (2010).
  • [32] Gambhir, M., Kumar, M., Jha, P.K. and Mohan, M., “Linear and nonlinear optical absorption coefficients and refractive index changes associated with intersubband transitions in a quantum disk with flat cylindrical geometry”, Journal of Luminescence, 143: 361–367, (2013).