Use of Ultrasound to Prepare Permeable Crosslinked PVA Membranes

The major topic covered in this paper is the application of ultrasound to crosslinked- poly(vinyl alcohol) (c-PVA) membranes as a novel, simple, eco-friendly, green-method to enhance the reduced permeabilities of c-PVA membranes due to crosslinking. The effect of sonication on the swelling and diffusion behaviors of c-PVA membranes was compared with that of the additive added crosslinked composite membranes, for which n-SiO2 and n-Ag were used as nanofillers. Aqueous solutions of rhodamine-b (RB) and Fe3+ were used to determine the permeation characteristics of the membranes. By the study, it was determined that although the presence of n-Ag and also n-SiO2 increased the hydrophilicity and the permeation capability of the c-PVA membranes, ultrasonication (US) was found to be more effective, eco-friendy method to promote the permeation characteristics of the membranes.

___

  • [1] Singh, R. and Kulkarni, S.G., “Morphological and mechanical properties of poly (vinyl alcohol) doped with inorganic fillers”, International Journal of Polymeric Materials and Polymeric Biomaterials, Vol. 62: 351-357, (2013).
  • [2] Asman, G. and Şanlı, O., “Separation characteristics of acetic acid–water mixtures using poly(vinyl alcohol-g-4-vinyl pyridine) membranes by pervaporation and temperature difference evapomeation techniques”, Journal of Applied Polymer Science, Vol. 100: 1385-1394, (2006).
  • [3] Bui, T.D., Wong, Y., Thu, K., Oh, S.J., Kum Ja, M., Ng, K.C., Raisul, K. and Chua, K.J., “Effect of hygroscopic materials on water vapor permeation and dehumidification performance of poly(vinyl alcohol) membranes”, Journal of Applied Polymer Science, Vol. 134: 44765-44773, (2017).
  • [4] Kuila, S.B. and Ray, S.K., “Dehydration of dioxane by pervaporation using filled blend membranes of poly(vinyl alcohol) and sodium alginate”, Carbohydrate Polymers, Vol. 101: 1154-1165, (2014).
  • [5] Zhang, S. Zou, Y. Wei, T. Mu, C. Liu, X. and Tong, Z., “Pervaporation dehydration of binary and ternary mixtures of n-butyl acetate, n-butanol and water using PVA-CS blended membranes”, Separation and Purification Technology, Vol. 173: 314-322, (2017).
  • [6] Hu, K., Nie, J., Liu, J. and Zheng, J., “Separation of methanol from methanol/water mixtures with pervaporation hybrid membranes”, Journal of Applied Polymer Science, Vol. 128: 1469-1475, (2013).
  • [7] Singha, N.R., Kar, S. and Ray, S.K., “Synthesis of chemically modified poly(vinyl alcohol) membranes for dehydration of dioxane by pervaporation”, Separation Science and Technology, Vol. 44: 422-446, (2009).
  • [8] Ghobadi, N., Mohammadi, T., Kasiri, N. and Kazemimoghadam, M., “Modified poly(vinyl alcohol)/chitosan blended membranes for isopropanol dehydration via pervaporation: Synthesis optimization and modeling by response surface methodology”, Journal of Applied Polymer Science, Vol. 134: 44587-44602, (2017).
  • [9] Li, Y. and Yao, S., “High stability under extreme condition of the poly(vinyl alcohol) nanofibers crosslinked by glutaraldehyde in organic medium”, Polymer Degradation and Stability, Vol. 137: 229-237, (2017).
  • [10] Asman, G. and Şanlı, O., “Separation of acetic acid‐water mixtures through poly(vinyl alcohol)/poly(acrylic acid) alloy membranes by using evapomeation and temperature difference evapomeation methods”, Separation Science and Technology, Vol. 41: 1193-1209, (2006).
  • [11] Xia, L.L., Li, C.L. and Wang, Y., “In-situ crosslinked PVA/organosilica hybrid membranes for pervaporation separations”, Journal of Membrane Science, Vol. 498: 263-275, (2016).
  • [12] Zhang, Q., Li, B., Sun, D., Zhang, L., Li, D. and Yang, P., “Preparation and characterization of PVA membrane modified by water-soluble hyperbranched polyester (WHBP) for the dehydration of n-butanol”, Journal of Applied Polymer Science, Vol. 133: 43533-43542, (2016).
  • [13] Sukhlaaied, W. and Riyajan, S., “Green robust pH–temperature-sensitive maleated poly(vinyl alcohol)-g-gelatin for encapsulated capsaicin”, Polymer Bulletin, Vol. 73: 2303-2320, (2016).
  • [14] Jayadevan, J., Alex, R. and Gopalakrishnapanicker, U., “Chemically modified natural rubber latex-poly(vinyl alcohol) blend membranes for organic dye release”, Reactive and Functional Polymers, Vol. 112: 22-32, (2017).
  • [15] Mallakpour, S. and Jarahiyan, A., “Utilization of ultrasonic irradiation as a green and effective strategy to prepare poly(N-vinyl-2-pyrrolidone)/modified nano-copper (II) oxide nanocomposites”, Ultrasound Sonochemistry, Vol. 37: 128-135, (2017).
  • [16] Ng, L.Y., Leo, C.P. and Mohammad, A.W., “Optimizing the incorporation of silica nanoparticles in polysulfone/poly (vinyl alcohol) membranes with response surface methodology”, Journal of Applied Polymer Science, Vol. 121: 1804-1814, (2011).
  • [17] Asman, G., Kaya, M. and Bayramgil, N.P., “Effect of sonic treatment on the permeation performance of cellulose acetate membranes modified by n-SiO2”, Turkish Journal of Chemistry, Vol. 39: 297-305, (2015).
  • [18] Semsarzadeh, M.A. and Ghalei, B., “Preparation, characterization and gas permeation properties of polyurethane-silica/poly(vinyl alcohol) mixed matrix membranes”, Journal of Membrane Science, Vol. 432: 115-125, (2013).
  • [19] Zhang, L., Chen, X., Zeng, C., and Xu, N., “Preparation and gas separation of nano-sized nickel particle-filled carbon membranes”, Journal of Membrane Science Vol. 281: 429-434, (2006).
  • [20] Jiang, X., Luo, Y., Hou, L., and Zhao, Y., “The effect of glycerol on the crystalline, thermal, and tensile properties of CaCl2-doped starch/PVA films”, Polymer Composites, Vol. 37: 3191-3199, (2016).
  • [21] Rodgers, M.P., Shi, Z. and Holdcroft, S., “Transport properties of composite membranes containing silicon dioxide and nafion”, Journal of Membrane Science Vol. 325: 346-356, (2008).
  • [22] Shi, J.J., and Yang, E.L., “Green electrospinning and crosslinking of polyvinyl alcohol/ citric acid”, Journal of Nano Research, Vol. 32: 32-42, (2015).
  • [23] Lin, X., Gong, M., Liu, Y., Wu, L., Li, Y., Liang, X., Li, Q. and Xu, T., “A convenient, efficient and green route for preparing anion exchange membranes for potential application in alkaline fuel cells”, Journal of Membrane Science, Vol. 425-426: 190-199, (2013).
  • [24] Singh, S., Jasti, A., Kumar, M., and Shahi, V.K., “A green method for the preparation of highly stable organic-inorganic hybrid anion-exchange membranes in aqueous media for electrochemical processes”, Polymer Chemistry, Vol. 1: 1302-1312, (2010).
  • [25] Zhu, H., Du, M., Zhang, M., Wang, P., Bao, S., Fu, Y., and Yao, J., “Fecile and green fabrication of small, mono-disperse and size-controlled noble metal nanoparticles embedded in water-stable polyvinyl alcohol nanofibers: High sensitive, flexible and reliable materials for biosensors”, Sensors and Actuators B: Chemical, Vol. 185: 608-619, (2013).
  • [26] Vatanpour, V., Shockravi, A., Zarrabi, H., Nikjavan, Z., and Javadi, A., “Fabrication and characterization of anti-fouling and anti-bacterial Ag-loaded graphene oxide/polyethersulfone mixed matrix membrane”, Journal of Industrial and Engineering Chemistry, Vol. 30: 342-352, (2015).
  • [27] Lu, X., Zou, X., Li, C., Zhong, Q., Ding, W., and Zhou, Z., “Green electrochemical process solid-oxide oxygen-ion-conducting membrane (SOM): Direct extraction of Ti-Fe alloys from natural ilmenite”, Metallurgical and Materials Transactions B, Vol. 43: 503-512, (2012).
  • [28] Grönroos, A., Pirkonen, P., Heikkinen, J., Ihalainen, J., Mursunen, H. and Sekki, H., “Ultrasonic depolymerization of aqueous polyvinyl alcohol”, Ultrasonic Sonochemistry, Vol. 8: 259-264, (2001).
  • [29] Shchukin, D., Skorp, E., Belova, V. and Möhwald, H., “Ultrasonic cavitation at solid surfaces”, Advanced Materials, Vol. 23: 1922-1934, (2011).
  • [30] Tung, K.L., Teoh, H.C., Lee, C.W., Chen, C.H., Li, Y.L., Lin, Y.F., Chen, C.L. and Huang, M.S., “Characterization of membrane fouling distribution in a spiral wound module using high-frequency ultrasound image analysis”, Journal of Membrane Science, Vol. 495: 489-501, (2015).
  • [31] Gómez Álvarez-Arenas, T.E., Apel, P.Y., Orelovitch, O.L. and Muñoz, M., “New ultrasonic technique for the study of the pore shape of track-etched pores in polymer films”, Radiation Measurements, Vol. 44: 1114-1118, (2009).
  • [32] Wang, X., Li, X., Fu, X., Chen, R. and Gao, B., “Effect of ultrasound irradiation on polymeric microfiltration membranes”, Desalination, Vol. 175: 187-196, (2005).
  • [33] Li, Y.S., Shi, L.C., Gao, X.F. and Huang, J.G., “Cleaning effects of oxalic acid under ultrasound to the used reverse osmosis membranes with an online cleaning and monitoring system”, Desalination, Vol. 390: 62-71, (2016).
  • [34] Luján-Facundo, M.J., Mendoza-Roca, J.A., Cuartas-Uribe, B. and Álvarez-Blanco, S., “Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries”, Ultrasonics Sonochemistry, Vol. 33: 18-25, (2016).
  • [35] Yu, W., Graham, N. and Liu, T., “Effect of intermittent ultrasound on controlling membrane fouling with coagulation pre-treatment: Significance of the nature of adsorbed organic matter”, Journal of Membrane Science, Vol. 535: 168-177, (2017).
  • [36] Aliasghari-Aghdam, M., Mirsaeedghazi, H., Aboonajmi, M. and Kianmehr, M.H., “Effect of ultrasound on different mechanisms of fouling during membrane clarification of pomegranate juice”, Innovative Food Science and Emerging Technologies, Vol. 30: 127-131, (2015).
  • [37] Cai, M., Li, W. and Liang, H., “Effects of ultrasound parameters on ultrasound-assisted ultrafiltration using cross-flow hollow fiber membrane for radix astragalus extracts”, Chemical Engineering and Processing, Vol. 86: 30-35, (2014).
  • [38] Augustine, A., Raduzan, J., Asma, Y., Afeez, G. and Azza, A., “Comparative study of continuous and intermittent ultrasonic ultrafiltration membrane for treatment of synthetic produced water containing emulsion”, Chemical Engineering and Processing, Vol. 132: 137-147, (2018).
  • [39] Qasim, M., Darwish, N.N., Mhiyo, S., Darwish, N.A. and Hilal, N., “The use of ultrasound to mitigate membrane fouling in desalination and water treatment”, Desalination, Vol. 443: 143-164, (2018).
  • [40] Masselin, I., Chasseray, X., Durand-Bourlier, L., Lainé, J.M., Syzaretc, P.Y. and Lemordant, D., “Effect of sonication on polymeric membranes”, Journal of Membrane Science, Vol. 181: 213-220, (2001).
  • [41] Wang, R., Ma, M., Yan, Y. and Wang, Z., “Ultrasonic-assisted fabrication of high flux t-type zeolite membranes on alumina hollow fibers”, Journal of Membrane Science, Vol. 548: 676-684, (2018).
  • [42] Julian, T.N. and Zentner, G.M., “Ultrasonically mediated solute permeation through polymer barriers”, Journal of Pharmacy and Pharmacology, Vol. 38: 871-877, (2011).
  • [43] Kost, J., Leong, K. and Langer, R., “Ultrasound-enhanced polymer degradation and release of incorporated substances”, National Academi of Science, Vol. 86: 7663-7666, (1989).
  • [44] Chuang, W.Y., Young, T.H. and Chiu, W.Y., “The effect of acetic acid on the structure and filtration properties of poly(vinyl alcohol) membranes”, Journal of Membrane Science, Vol. 172: 241-251, (2000).
  • [45] Sitter, K.D., Winberg, P., Haend, J.D., Dotremont, C., Leysen, R., Martens, J.A., Mullens, S., Maurer, F.H.J. and Vancelecom, I.F.J., “Silica filled poly [1-(trimethyl silyl-1-propyne nanocomposite membranes: Relation between the transport of gases and structural characteristics”, Journal of Membrane Science, Vol. 278: 83-91, (2006).
  • [46] Bi, C., Zhang, H., Zhang, Y., Zhu, X., Ma, Y., Dai, H. and Xiao, S., “Fabrication and investigation of SiO2 supported sulfated zirconia/nafion self-humidifying membrane for proton exchange membrane fuel cell applications”, Journal of Power Source, Vol. 184:197-203, (2008).
  • [47] Meng, F. and Sun, Z.A., “Mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO2 thin films deposited by RF magnetron sputtering”, Applied Surface Science, Vol. 255: 6715-6720, (2009).
  • [48] Watanabe, M., Uchida, H., Seki, Y., Emori, M. and Stonehart, P., “Self-humidifying polymer electrolyte membranes for fuel cells”, Journal of Electrochemical Society, Vol. 143: 3847-3852, (1996).
  • [49] Price, G.J., White, A.J. and Clifton, A.A., “The effect of high-intensity ultrasound on solid polymers”, Polymer, Vol. 36: 4919-4925, (1995).
  • [50] Merkel, T.C., Freeman, B.D., Spontak, R.J., He, Z., Pinnau, I., Meakin, P. and Hill, A.J., “Ultrapermeable reverse-selective nanocomposite membranes”, Science, Vol. 296: 519-522, (2002).
  • [51] Asman, G., “Use of poly (methyl methacrylate-co-methacrylic acid) membranes in ultrafiltration of aqueous Fe3+ solutions by complexing with poly (vinyl pyrrolidone) and dextran”, Separation Science and Technology, Vol. 44: 1164-1180, (2009).
  • [52] Feng, C., Shi, B., Li, G. and Wu, Y., “Preparation and properties of microporous membrane from poly(vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane distillation”, Journal of Membrane Science, Vol. 237: 15-24, (2004).
  • [53] Mimoune, S., Belazzougui, R.E. and Amrani, F., “Purification of aqueous solutions of metal ions by ultrafiltration”, Desalination, Vol. 217: 251-259, (2007).