Generalization for the Average Value of the Difference Between the Energies of Two Graphs
Generalization for the Average Value of the Difference Between the Energies of Two Graphs
Let G n,m denote the set of all simple graphs with n vertices and m edges. In this paper, for a given type of graph Hermite matrix A, we determine the average values of the difference between Aenergies of two graphs randomly chosen from , ˆ Gnm . These results yield criterions for deciding when two graphs are almost A-equienergetic. Our results generalize some previous results in the literature. Moreover, we give new results on Laplacian energy.
___
- [1] Cvetković, D., Doob, M., Sachs, H., Spectra of Graphs-Theory and Application, Academic Press, New York, (1980).
- [2] Gutman, I., "The energy of a graph", Ber. Math. Stat. Sekt. Forschungsz. Graz, 103: 1-22, (1978).
- [3] Gutman, I., "Total π-electron energy of benzenoid hydrocarbons", Topics Curr. Chem., 162: 29-63, (1992).
- [4] Gutman, I., "The energy of a graph: old and new results", In: Betten, A., Kohnert, A., Laue, R., Wassermann A. ed., Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 196-211, (2001).
- [5] Gutman, I., "Topology and stability of conjugated hydrocarbons. The dependence of total π -electron energy on molecular topology", J. Serb. Chem. Soc. 70: 441-456, (2005).
- [6] Gutman, I., "Comparative studies of graph energies", Bulletin de l’Acad´emie Serbe des Sciences et des Arts (Classe des Sciences Math´ematiques et Naturelles), 144: 1-17, (2012).
- [7] Gutman, I., Li, X., Zhang, J., "Graph energy", In: Dehmer, M., Emmert-Streib F. ed., Analysis of Complex Networks From Biology to Linguistics, Wiley-VCH, Weinheim, 145-174, (2009).
- [8] Li, X., Shi, Y., Gutman, I., Graph Energy, Springer, New York, (2012).
- [9] Ganie, H. A., Samee, U. T., Pirzada, S. “On graph energy, maximum degree and vertex cover number”, Le Matematiche, 74: 163-172, (2019).
- [10] Graovac, A., Gutman, I., John, P.E., Vidović, D., Vlah, I., "On statistics of graph energy", Z. Naturforsch., 56a: 307-311, (2001).
- [11] Balakrishnan, R., "The energy of a graph", Lin. Algebra Appl., 387: 287-295, (2004).
- [12] Brankov, V., Stevanović, D., Gutman, I., "Equienergetic chemical trees", J. Serb. Chem. Soc., 69: 549-553, (2004).
- [13] Ganie, H. A., Pirzada, L., Iványi, A., "Energy, Laplacian energy of double graphs and new families of equienergetic graphs", Acta Univ. Sapientiae Informatica, 6: 89-116, (2014).
- [14] Indulal, G., Vijayakumar, A., "On a pair of equienergetic graphs", MATCH Commun. Math. Comput. Chem., 55: 83-90, (2006).
- [15] Miljković, O., Furtula, B., Radenković, S., Gutman, I., "Equienergetic and almost-equienergetic trees", MATCH Commun. Math. Comput. Chem., 61: 451-461, (2009).
- [16] Ramane, H.S., Walikar, H.B., "Construction of equienergetic graphs", MATCH Commun. Math. Comput. Chem., 57: 203-210, (2007).
- [17] Stanić, M.P., Gutman, I., "On almost-equienergetic graphs", MATCH Commun. Math. Comput. Chem., 70: 681-688, (2013).
- [18] Stanić, M.P., Gutman, I., "Towards a definition of almost-equienergetic graphs", J. Math. Chem., 52: 213-221, (2014).
- [19] Merris, R., "A survey of graph Laplacians", Lin. Multilin. Algebra, 39:19-31, (1995).
- [20] Gutman, I., Zhou, B., "Laplacian energy of a graph", Lin. Algebra Appl., 414: 29-37, (2006).
- [21] Andriantiana, E.O.D., "Laplacian energy", In: Gutman, I., Li, X. ed., Energies of Graphs -Theory and Applications, Univ. Kragujevac, Kragujevac, 49-80, (2016).
- [22] Pirzada, S., Ganie, H.A., "On the Laplacian eigenvalues of a graph and Laplacian energy" Lin. Algebra Appl., 486: 454-468, (2015).
- [23] Ganie, H.A., Pirzada, S., Baskoro, E. T., “On energy, Laplacian energy and p-fold graphs”, El. J. Graph Theory Appl., 3: 94-107, (2015).
- [24] Liu, J., Liu, B., Radenković, S., Gutman, I., "Minimal LEL-equienergetic graphs", MATCH Commun. Math. Comput. Chem., 61: 471-478, (2009).
- [25] Pirzada S., Ganie, H.A., "On the construction of L-equienergetic graphs", AKCE International J. Graphs Combin., 12: 141-154, (2015).
- [26] Stevanović, D., "Large sets of noncospectral graphs with equal Laplacian energy", MATCH Commun. Math. Comput. Chem., 61: 463-470, (2009).
- [27] Horn, R.A., Johnson, C.R., Matrix Analysis, Cambridge Univ. Press, Cambridge, (1985).
- [28] Liu, J., Liu, B., "Generalization for Laplacian energy", Appl. Math. J. Chinese Univ., 24: 443-450, (2009).
- [29] Altindag, I., "Some statistical results for Randić energy of graphs", MATCH Commun. Math. Comput. Chem., 79: 331-339, (2018).
- [30] Zumstein, P., "Comparison of spectral methods through the adjacency matrix and the Laplacian of a graph", Diploma Thesis, ETH Zurich, (2005).
- [31] Bozkurt, S.B., Gungor, A.D., Gutman, I., Cevik, A.S., "Randić matrix and Randić energy", MATCH Commun. Math. Comput. Chem., 64: 239-250, (2010).
- [32] Zhou, B., Gutman, I., "On Laplacian energy of graphs", MATCH Commun. Math. Comput. Chem., 57: 211-220, (2007).
- [33] Ganie, H.A., Chat, B. A., Pirzada, S., "Signless Laplacian energy of a graph and energy of a line graph." Lin. Algebra Appl., 544: 306-324, (2018).
- [34] Ganie, H.A., Pirzada, S., "On the bounds for signless Laplacian energy of a graph" Discrete Appl. Math., 228: 3-13, (2017).