Ultra düşük oranlarda SWCNT ilaveli UHPC’lerin mekanik ve elektriksel özelliklerinin incelenmesi

Nanoteknolojinin gelişmesi ile birlikte inşaat sektöründe de özellikle yapı malzemeleri alanında spesifik özelliklere sahip nano malzemelerin kullanılması araştırmacıların ilgisini çekmektedir. Literatüre göre çimentolu malzemelerin karışımlarında karbon nanotüp (CNT)'ler kullanılabilirliği yüksek olan nano malzemeler arasında yer almaktadır. Çok duvarlı karbon nanotüp (MWCNT) ilaveli betonlar üzerinde birçok çalışma olması ile birlikte tek duvarlı karbon nanotüp (SWCNT)'lerin beton üzerinde davranışlarını inceleyen araştırmalar oldukça sınırlıdır. Bu çalışmada çimento ağırlığının % 0.0125, 0.020 ve 0.025 oranlarında SWCNT kullanılarak üretilen ultra yüksek performanslı çimentolu kompozitlerin (UHPC) mekanik ve elektriksel özellikleri araştırılmıştır. Hazırlanan 8 adet UHPC karışımlarının 4 tanesinde sadece SWCNT, 4 tanesinde ise SWCNT+ Mikro çelik fiber katılmıştır. UHPC karışımlarında mikro çelik lifler ağırlıkça %4 oranında kullanılmıştır. İletkenlik ve eğilme deneyleri 12 X 3 X 2 cm numuneler üzerinde gerçekleştirilmiştir. 28 günlük basınç dayanımları, 7 cm çapında ve 14 cm uzunluğunda silindirik numuneler kullanılarak belirlenmiştir. Elektriksel direnç ölçümü için çimentolu malzemelerin ölçümünde yaygın olan iki noktalı tek eksenli yöntem kullanılmıştır. Elde edilen sonuçlara göre SWCNT’nin UHPC’lerin mekanik özellikler üzerinde olumlu etkileri gözlenmiştir. SWCNT eklenmesi ve oranının artmasıyla elektriksel direnç azalmıştır, ancak gerçekleşen akım hızının artırılması için daha yüksek oranlarda SWCNT kullanılmasının gerekli olduğu tespit edilmiştir. Ayrıca mikro çelik lifli karışımlarda elektriksel direnç parametreleri üzerinde SWCNT’nin etkisi daha belirgin olduğu görülmüştür.

___

  • H. Kasagani, C.B.K. Rao, Effect of graded fibers on stress strain behaviour of Glass Fiber Reinforced Concrete in tension, Constr. Build. Mater. 183 (2018) 592–604. https://doi.org/10.1016/j.conbuildmat.2018.06.193.
  • H. Dehghanpour, K. Yilmaz, M. Ipek, Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes, Constr. Build. Mater. 221 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.025.
  • H. Zhou, B. Jia, H. Huang, Y. Mou, Experimental study on basic mechanical properties of basalt fiber reinforced concrete, Materials (Basel). 13 (2020). https://doi.org/10.3390/ma13061362.
  • A. Hawreen, J.A. Bogas, R. Kurda, Mechanical Characterization of Concrete Reinforced with Different Types of Carbon Nanotubes, Arab. J. Sci. Eng. 44 (2019) 8361–8376. https://doi.org/10.1007/s13369-019-04096-y.
  • X. Zhu, Y. Gao, Z. Dai, D.J. Corr, S.P. Shah, Effect of interfacial transition zone on the Young’s modulus of carbon nanofiber reinforced cement concrete, Cem. Concr. Res. 107 (2018) 49–63. https://doi.org/10.1016/j.cemconres.2018.02.014.
  • H. Dehghanpour, K. Yılmaz, A more sustainable approach for producing less expensive electrically conductive concrete mixtures: Experimental and FE study, Cold Reg. Sci. Technol. 184 (2021) 103231. https://doi.org/10.1016/j.coldregions.2021.103231.
  • H.Y. Kordkheili, S.E. Shehni, G. Niyatzade, Effect of carbon nanotube on physical and mechanical properties of natural fiber/glass fiber/cement composites, J. For. Res. 26 (2015) 247–251. https://doi.org/10.1007/s11676-014-0003-y.
  • H.Y. Kordkheili, S. Hiziroglu, M. Farsi, Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber, Mater. Des. 33 (2012) 395–398. https://doi.org/10.1016/j.matdes.2011.04.027.
  • K.P. Chong, E.J. Garboczi, Smart and designer structural material systems, Prog. Struct. Eng. Mater. 4 (2002) 417–430. https://doi.org/10.1002/pse.134.
  • T.N.M. Nguyen, D.Y. Yoo, J.J. Kim, Cementitious material reinforced by carbon nanotube-Nylon 66 hybrid nanofibers: Mechanical strength and microstructure analysis, Mater. Today Commun. 23 (2020) 100845. https://doi.org/10.1016/j.mtcomm.2019.100845.
  • M.S. Morsy, S.H. Alsayed, M. Aqel, Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar, Constr. Build. Mater. 25 (2011) 145–149. https://doi.org/10.1016/j.conbuildmat.2010.06.046.
  • F. John, Controlled patterning and growth of single wall and multi wall carbon nanotubes, 1 (2005) 512–514. M. Brenner, A. Mariputtana, K. Michael, G.-Y. Li, Carbon Nanotube-Fıber Reınforced Cement And Concrete, US20080134942A1, United States Patent Application Publication, 2008.
  • A. Raza, M. Bhandari, H.K. Kim, H.M. Son, B. Huang, I.W. Nam, A study on mechanical characteristics of cement composites fabricated with nano-silica and carbon nanotube, Appl. Sci. 11 (2021) 1–16. https://doi.org/10.3390/app11010152.
  • B. Şimşek, Multi-walled carbon nanotubes with different features reinforced cement pastes: A compressive and systematic approach using principal component analysis, J. Build. Eng. 32 (2020). https://doi.org/10.1016/j.jobe.2020.101792.
  • P. Zhao, S. Wang, A. Kadlec, Z. Li, X. Wang, Properties of cement–sand-based piezoelectric composites with carbon nanotubes modification, Ceram. Int. 42 (2016) 15030–15034. https://doi.org/10.1016/j.ceramint.2016.06.153.
  • R. Potong, R. Rianyoi, A. Ngamjarurojana, A. Chaipanich, Influence of carbon nanotubes on the performance of bismuth sodium titanate-bismuth potassium titanate-barium titanate ceramic/cement composites, Ceram. Int. 43 (2017) S75–S78. https://doi.org/10.1016/j.ceramint.2017.05.225.
  • N. Gürbilek, Nanotechnology in Civil Infrastructure, J. Chem. Inf. Model. 53 (2013) 1689–1699.
  • S.H. Jang, D.P. Hochstein, S. Kawashima, H. Yin, Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture, Cem. Concr. Compos. 77 (2017) 49–59. https://doi.org/10.1016/j.cemconcomp.2016.12.003.
  • E. García-Macías, A. D’Alessandro, R. Castro-Triguero, D. Pérez-Mira, F. Ubertini, Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites, Compos. Part B Eng. 108 (2017) 451–469. https://doi.org/10.1016/j.compositesb.2016.10.025.
  • A. Khuzin, R. Ibragimov, Processes of structure formation and paste matrix hydration with multilayer carbon nanotubes additives, J. Build. Eng. 35 (2021) 102030. https://doi.org/10.1016/j.jobe.2020.102030.
  • F. Li, L. Liu, ZhemingYang, S. Li, Influence of modified multi-walled carbon nanotubes on the mechanical behavior and toughening mechanism of an environmentally friendly granulated blast furnace slag-based geopolymer matrix, Ceram. Int. 47 (2021) 907–922. https://doi.org/10.1016/j.ceramint.2020.08.203.
  • F. Li, Z. Yang, A. Zheng, S. Li, Properties of modified engineered geopolymer composites incorporating multi-walled carbon Nanotubes ( MWCNTs ) and granulated blast furnace Slag ( GBFS ), Ceram. Int. (2021) 1–16. https://doi.org/10.1016/j.ceramint.2021.02.008.
  • J. Kang, S. Al-sabah, Effect of Single-Walled Carbon Nanotubes on Strength Properties of Cement Composites, Materials (Basel). (2020) 1–21.
  • X. Li, W. Wei, H. Qin, Y. Hang Hu, Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement, J. Phys. Chem. Solids. 85 (2015) 39–43. https://doi.org/10.1016/j.jpcs.2015.04.018.
  • J.M. Makar, G.W. Chan, Growth of cement hydration products on single-walled carbon nanotubes, J. Am. Ceram. Soc. 92 (2009) 1303–1310. https://doi.org/10.1111/j.1551-2916.2009.03055.x.
  • H.J. Chen, Y.L. Yu, C.W. Tang, Mechanical properties of ultra-high performance concrete before and after exposure to high temperatures, Materials (Basel). 13 (2020). https://doi.org/10.3390/ma13030770.
  • A. Topbas, F.O. Tulen, M. Marasli, B. Kohen, A Prefabricated UHPC Shell Pedestrian Bridge, (2019) Structural Membranes 2019-9th International Conf.
  • ASTM C 1611/C 1611M, Standard Test Method for Slump Flow of Self-Consolidating Concrete, American Society for Testing and Materials. (205AD). TS EN 12390-3, Beton – Sertleşmiş beton deneyleri - Bölüm 3 : Deney numunelerinde basınç dayanımının tayini, T Standartları Enstitüsü. (2002).
  • H. Dehghanpour, K. Yilmaz, The relationship between resistances measured by two-probe, Wenner probe and C1760-12 ASTM methods in electrically conductive concretes, SN Appl. Sci. 2 (2020) 10. https://doi.org/10.1007/s42452-019-1811-7.
  • ASTM C805: Standard test method for rebound number of hardened concrete, American Society for Testing and Materials (1997).
  • ASTM C597: Standard test method for pulse velocity through concrete, American Society for Testing and Materials. (2009).
  • A.M. Rashad, Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials, Constr. Build. Mater. 153 (2017) 81–101. https://doi.org/10.1016/j.conbuildmat.2017.07.089.
  • S. Xu, Y. Lyu, S. Xu, Q. Li, Enhancing the initial cracking fracture toughness of steel-polyvinyl alcohol hybrid fibers ultra high toughness cementitious composites by incorporating multi-walled carbon nanotubes, Constr. Build. Mater. 195 (2019) 269–282. https://doi.org/10.1016/j.conbuildmat.2018.10.133.
  • L. Raki, J. Beaudoin, R. Alizadeh, J. Makar, T. Sato, Cement and concrete nanoscience and nanotechnology, Materials (Basel). 3 (2010) 918–942. https://doi.org/10.3390/ma3020918.
  • J. Keriene, M. Kligys, A. Laukaitis, G. Yakovlev, A. Špokauskas, M. Aleknevičius, The influence of multi-walled carbon nanotubes additive on properties of non-autoclaved and autoclaved aerated concretes, Constr. Build. Mater. 49 (2013) 527–535. https://doi.org/10.1016/j.conbuildmat.2013.08.044.
  • A. Chaipanich, T. Nochaiya, W. Wongkeo, P. Torkittikul, Compressive strength and microstructure of carbon nanotubes-fly ash cement composites, Mater. Sci. Eng. A. 527 (2010) 1063–1067. https://doi.org/10.1016/j.msea.2009.09.039.
  • Y. Hu, D. Luo, P. Li, Q. Li, G. Sun, Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes, Constr. Build. Mater. 70 (2014) 332–338. https://doi.org/10.1016/j.conbuildmat.2014.07.077.
  • M. del C. Camacho, O. Galao, F.J. Baeza, E. Zornoza, P. Garcés, Mechanical properties and durability of CNT cement composites, Materials (Basel). 7 (2014) 1640–1651. https://doi.org/10.3390/ma7031640.
  • H. Dehghanpour, K. Yilmaz, F. Afshari, M. Ipek, Electrically conductive concrete: A laboratory-based investigation and numerical analysis approach, Constr. Build. Mater. 260 (2020) 119948. https://doi.org/10.1016/j.conbuildmat.2020.119948.
  • A. D’Alessandro, M. Rallini, F. Ubertini, A.L. Materazzi, J.M. Kenny, Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications, Cem. Concr. Compos. 65 (2016) 200–213. https://doi.org/10.1016/j.cemconcomp.2015.11.001.
  • S. Musso, J.M. Tulliani, G. Ferro, A. Tagliaferro, Influence of carbon nanotubes structure on the mechanical behavior of cement composites, Compos. Sci. Technol. 69 (2009) 1985–1990. https://doi.org/10.1016/j.compscitech.2009.05.002.
  • M. Kazemi, M. Hajforoush, P.K. Talebi, M. Daneshfar, A. Shokrgozar, S. Jahandari, M. Saberian, J. Li, In-situ strength estimation of polypropylene fibre reinforced recycled aggregate concrete using Schmidt rebound hammer and point load test, J. Sustain. Cem. Mater. 9 (2020) 289–306. https://doi.org/10.1080/21650373.2020.1734983.
  • K. Kovler, F. Wang, B. Muravin, Testing of concrete by rebound method: Leeb versus Schmidt hammers, Mater. Struct. Constr. 51 (2018) 1–14. https://doi.org/10.1617/s11527-018-1265-1.
  • M. Kazemi, R. Madandoust, J. de Brito, Compressive strength assessment of recycled aggregate concrete using Schmidt rebound hammer and core testing, Constr. Build. Mater. 224 (2019) 630–638. https://doi.org/10.1016/j.conbuildmat.2019.07.110.
  • K.J. Rao, K. Keerthi, S. Vasam, Acid resistance of quaternary blended recycled aggregate concrete, Case Stud. Constr. Mater. 8 (2018) 423–433. https://doi.org/10.1016/j.cscm.2018.03.005.
  • R. Hamid, K.M. Yusof, M.F.M. Zain, A combined ultrasound method applied to high performance concrete with silica fume, Constr. Build. Mater. 24 (2010) 94–98. https://doi.org/10.1016/j.conbuildmat.2009.08.012.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

Deprem sonrası geçici barınma birimi: CLT E-BOX

Erkan AVLAR, Sevgül LİMONCU, Didem TIZMAN

Bir yönlü fonksiyonel kademelendirilmiş plakaların kırılma davranışlarının peridinamik teorisi kullanılarak incelenmesi

Kadir KAYA, İbrahim OLMUŞ, Mehmet DÖRDÜNCÜ

Hedeflemeli manyetik hipertermi için tek ve çift eksen konumlamalarla oluşturulan gradyan desenlerinin haritalanarak incelenmesi

Serhat KÜÇÜKDERMENCİ

Endüstriyel ürün imalatında kullanılan bazı ahşap türlerinin CNC lazerle işlenebilme performanslarının araştırılması

Cebrail AÇIK, Ahmet TUTUŞ

Saf ZnO ve katkılı ZnO:Alx:Mny ( x=1% at., y=1%, 2%, 3%, 5% at.) yarı iletken ince filmlerin yapısal ve optiksel özellikleri ile üretilen diyotların elektriksel özelliklerinin araştırılması

Nihat DEMİRBİLEK, Mehmet KAYA, Fahrettin YAKUPHANOĞLU

Isıl işlem ile modifiye edilmiş arıtma çamuru kullanılarak sabit yataklı kolonda arsenik ve antimon giderimi

Berna KAVACIK, Deniz DÖLGEN

Sıra dışı biçimli yüksek ofis yapılarında kullanım alanı verimliliğinin belirlenmesine yönelik bir model

Fazilet TUĞRUL OKBAZ, Ayşin SEV

Ultrasonik destekli derin çekme işlemi: İki aşamalı sonlu elemanlar analizi ve deneysel doğrulaması

Sadık OLGUNER, A. Tolga BOZDANA

Sıcak daldırma alüminyumlama (SDA) ve difüzyon tavlaması ile yüzeyi modifiye edilmiş Ti-6Al-4V alaşımının karakterizasyonu

Yakup YÜREKTÜRK

Ultra düşük oranlarda SWCNT ilaveli UHPC’lerin mekanik ve elektriksel özelliklerinin incelenmesi

Muhammet SEİS, Serkan SUBAŞI, Muhammed MARAŞLI, Heydar DEHGHANPOUR