Ters mesafe ağırlıklandırma yöntemiyle bilgisayarlı tomografi imgeleri için yeni bir süper çözünürlük yaklaşımı

Bu çalışmada ters mesafe ağırlıklandırma yöntemi ve histogram eşitleme yöntemlerinin bütünleşikkullanılması ile oluşturulan bir tekli imge süper çözünürlük yaklaşımı önerilmiştir. Yapılan çalışmadaimgelerin boyutlarının artırılması sonucu oluşacak detay kayıplarının en aza indirgenmesi hedeflenmiştir.Önerilen yaklaşımda, ters mesafe ağırlıklandırma yöntemi ile imgeye ait kenar bilgileri başarı ile korunurken,piksellere ait parlaklık değerleri genel histogram eşitleme sayesinde gerçek imgeye benzetilmiştir.Bilgisayarlı tomografi imgelerinden oluşan bir veri tabanı kullanılarak yaklaşımın başarımı test edilmiştir.Elde edilen sonuçlar, literatürde kullanılan çeşitli süper çözünürlük yöntemleri ile detaylı bir şekildekarşılaştırılmıştır. Yöntemlerin başarımları karşılaştırılırken, korelasyon katsayısı, tepe sinyal gürültü oranı,yapısal benzerlik indeksi ve Pratt’ın başarım ölçüsünden faydalanılmıştır.

A novel super-resolution approach for computed tomography images by inverse distance weighting method

In this study, a single image super-resolution approach, which is an integrated use of inverse distance weighting and histogram equalization methods, is proposed. It is aimed to reduce the detail loss which will be the result of increasing the dimensions of the images. In the proposed approach, while the edge information of the image is successfully preserved by the inverse distance weighting method, the brightness values of the pixels are approximated to the true image through general histogram equalization. The performance of the approach has been tested using a computed tomography database. The results obtained were compared in detail with various super-resolution methods available in the literature. When comparing the performance of the method, correlation coefficient, peak signal to noise ratio, structural similarity index and Pratt's figure of merit were used.

___

  • Sorensen L., Shaker S.B., De Bruijne M., Quantitative Analysis of Pulmonary Emphysema using Local Binary Patterns, IEEE Transactions on Medical Imaging, 29 (2), 559-569., 2010.
  • Hagara M., Hlavatovic A., Video segmentation based on Pratt's figure of merit, In Radioelektronika, 2009. RADIOELEKTRONIKA'09. 19th International Conference, 91-94, 2009.
  • Wharton E.J., Panetta K., Agaian S.S., Logarithmic edge detection with applications. In Systems, Man and Cybernetics, 2007. ISIC, IEEE International Conference on, 3346-3351, 2007.
  • Brunet D., Vrscay E.R., Wang Z., On the mathematical properties of the structural similarity index, IEEE Transactions on Image Processing, 21 (4), 1488-1499, 2012.
  • Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P., Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13 (4), 600-612, 2004.
  • Kılıç O., Çerçioğlu H., Application of compromise multiple criteria decision making methods for evaluation of TCDD's railway lines projects, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (1), 211-220, 2016.
  • Tanchenko A., Visual-PSNR measure of image quality, Journal of Visual Communication and Image Representation, 25 (5), 874-878, 2014.
  • Devasena C.L., Hemalatha M., Hybrid Image Classification Technique to Detect Abnormal Parts in MRI Images, In Computational Intelligence and Information Technology, 200-208, Springer, Berlin, Heidelberg, 2011.
  • Pianosi F., Wagener T., A simple and efficient method for global sensitivity analysis based on cumulative distribution functions, Environmental Modelling & Software, 67, 1-11, 2015.
  • Shen D., Image registration by local histogram matching, Pattern Recognition, 40 (4), 1161-1172, 2007.
  • Zuo C., Chen Q., Sui X., Range limited bi-histogram equalization for image contrast enhancement, OptikInternational Journal for Light and Electron Optics, 124 (5), 425-431, 2013.
  • Chen F.W., Liu C.W., Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10 (3), 209-222, 2012.
  • Tomczak M., Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach, Journal of Geographic Information and Decision Analysis, 2 (2), 18-30, 1998.
  • Faghidian S.A., Jozie A., Sheykhloo M.J., Shamsi A., A novel method for analysis of fatigue life measurements based on modified Shepard method, International Journal of Fatigue, 68, 144-149, 2014.
  • De Mesnard L., Pollution models and inverse distance weighting: Some critical remarks, Computers & Geosciences, 52, 459-469, 2013.
  • Jing M.,Wu J., Fast image interpolation using directional inverse distance weighting for real-time applications, Optics Communications, 286, 111-116, 2013.
  • Lu G. Y., Wong D. W., An adaptive inverse-distance weighting spatial interpolation technique. Computers & geosciences, 34 (9), 1044-1055, 2008.
  • Pickup Lyndsey C., Machine learning in multi-frame image super-resolution, Oxford University, 2007.
  • Tian J., Ma K.K., A survey on super-resolution imaging, Signal, Image and Video Processing, 5 (3), 329-342, 2011.
  • Mac Aodha, O., Campbell N.D., Nair A., Brostow G. J., Patch based synthesis for single depth image superresolution, In European Conference on Computer Vision, 71-84, Springer, Berlin, Heidelberg, 2012.
  • Faramarzi E., Rajan D., Christensen M. P., Unified blind method for multi-image super-resolution and single/multi-image blur deconvolution, IEEE Transactions on Image Processing, 22 (6), 2101-2114, 2013.
  • Xu H., Zhai G., Yang X., Single image super-resolution with detail enhancement based on local fractal analysis of gradient, IEEE Transactions on circuits and systems for video technology, 23 (10), 1740-1754, 2013.
  • Farsiu S., Robinson D., Elad M., Milanfar P., Advances and challenges in super‐resolution, International Journal of Imaging Systems and Technology, 14 (2), 47-57, 2004.
  • Kim K.I., Kwon Y., Single-image super-resolution using sparse regression and natural image prior, IEEE Trans. Pattern Analysis and Machine Intelligence, 32 (6) 1127-1133, 2010.
  • Bareja M.N., Modi C.K., An effective iterative back projection based single image super resolution approach, In Communication Systems and Network Technologies (CSNT), 2012 International Conference on, 95-99. 2012.
  • Isaac J.S., Kulkarni R., Super resolution techniques for medical image processing, In Technologies for Sustainable Development (ICTSD), 2015 International Conference on, 1-6, 2015.
  • Kim J., Kwon Lee J., Mu Lee K., Accurate image superresolution using very deep convolutional networks, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1646-1654, 2016.
  • Mjolsness E., Neural networks, pattern recognition, and fingerprint hallucination, PhD thesis, California Institute of Technology, 1985.
  • Çatalbaş M.C., Öztürk S., Super resolution using radial basis neural networks, In Signal Processing and Communications Applications Conference (SIU), 21st, 1-4, 2013.
  • Gerchberg R.W., Super-resolution through error energy reduction. J. Mod. Opt. 21 (9), 709–720, 1974.
  • Long F., Zeng S., Huang Z.L., Localization-based super-resolution microscopy with an sCMOS camera Part II: Experimental methodology for comparing sCMOS with EMCCD cameras. Optics Express, 20 (16), 17741-17759, 2012.
  • Wanner S., Goldluecke B., Variational light field analysis for disparity estimation and super-resolution. IEEE transactions on pattern analysis and machine intelligence, 36 (3), 606-619, 2014.
  • Okuhata H., Imai R., Ise M., Omaki R. Y., Nakamura, H., Hara, S., Shirakawa, I., Implementation of dynamicrange enhancement and super-resolution algorithms for medical image processing, In Consumer Electronics (ICCE), 2014 IEEE International Conference on, 181- 184, 2014.
  • Rueda A., Malpica N., Romero E., Single-image superresolution of brain MR images using overcomplete dictionaries. Medical image analysis, 17 (1), 113-132, 2013.
  • Singh K., Gupta A., Kapoor R., Fingerprint image super-resolution via ridge orientation-based clustered coupled sparse dictionaries. Journal of Electronic Imaging, 24 (4), 043015, 2015.
  • Glasner D., Bagon S., Irani M., Super-resolution from a single image. In Computer Vision, 2009 IEEE 12th International Conference on , 349-356, 2009.
  • Nguyen K., Fookes C., Sridharan S., Denman S., Feature-domain super-resolution for iris recognition, Computer Vision and Image Understanding, 117 (10), 1526-1535, 2013.
  • Jiang J., Hu R., Wang Z., Han Z., Face super-resolution via multilayer locality-constrained iterative neighbor embedding and intermediate dictionary learning, IEEE Transactions on Image Processing, 23 (10), 4220-4231, 2014.
  • Dong W., Fu F., Shi G., Cao X., Wu J., Li G., Li X., Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Transactions on Image Processing, 25 (5), 2337-2352, 2016.
  • Nasrollahi K., Moeslund T.B., Super-resolution: a comprehensive survey, Machine vision and applications, 25 (6), 1423-1468, 2014.
  • Candès E.J., Fernandez‐Granda C., Towards a Mathematical Theory of Super‐resolution. Communications on Pure and Applied Mathematics, 67 (6), 906-956, 2014.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ