N-Vinilimidazol temelli yeni kopolimer hidrojeller: Sentez, karakterizasyon ve şişme davranışlarının incelenmesi

Bu çalışmada; serbest radikal çözelti polimerizasyonu ile N,N’-metilenbisakrilamid çapraz bağlayıcısı ve 2,2’-azo-bisisobutironitril başlatıcısı varlığında N-vinilimidazol temelli yeni kopolimer hidrojeller sentezlenmiştir. Komonomer(fonksiyonel monomer) olarak 2-(dimetilamino)etil metakrilat’ın sırasıyla 1-bromopentan ve 1-benzilklorür ile reaksiyonasokulmasıyla elde edilmiş kuaterner amonyum fonksiyonelliğine sahip [2-(metakriloiloksi)etil]dimetilpentil-amonyumbromür ve [2-(metakriloiloksi)etil]dimetilbenzilamonyum klorür yapıları kullanılmıştır. Elde edilen hidrojeller, FourierDönüşümlü İnfrared Sepektrometresi (FTIR) ve Taramalı Elektron Mikroskobu (SEM-EDS, Enerji Dağılımlı X-Işınıdedektörüne sahip) kullanılarak karakterize edilmiştir. SEM görüntüleri, jellerin gözenekli yüzey morfolojisine sahipolduklarını ortaya koymuş, yapılardaki kuaternize monomer varlığı spektrometrik yöntemler ile desteklenmiştir.Kopolimer yapılarındaki fonksiyonel monomer oranı molce %1 ile %15 arasında değiştirilmiştir. pH 6,0’da ve 25°C’dedinamik şişme deneyleri yürütülmüş ve elde edilen veriler kullanılarak, denge şişme oranı (Smak), başlangıç şişme hızı(r0), dengede su içeriği (DSİ) ve difüzyon katsayısı (D) gibi önemli şişme kinetiği ve difüzyon parametrelerihesaplanmıştır. Hidrofilik komonomer varlığında denge şişme değeri yaklaşık %1100’e kadar artmıştır. Homopolimerpoli(N-vinilimidazol) hidrojeli için 4,4 g su/g hidrojel olan bu değer 52,2 g su/g hidrojel’e kadar yükselmiştir.Homopolimer ve düşük oranda fonksiyonel monomer içeren kopolimer hidrojeller için suyun polimer matriks içinetaşınımı difüzyon kontrollü (Fick-tipi) iken, diğer tüm kopolimer hidrojellerde taşınım hem difüzyon hem de durulmakontrollü (Fick tipi olmayan) olarak gerçekleşmiştir.

Novel N-vinylimidazole based copolymeric hydrogels: Synthesis, characterization and swelling properties

In this study, novel N-vinylimidazole based copolymeric hydrogels were synthesized by free radical solution polymerization. In the presence of N,N’-methylenebisacrylamide and 2,2’-azo-bis-isobutyronitrile as crosslinking agent and initiator, respectively. [2-(methacryloyloxy)ethyl]dimethylpentylammonium bromide and [2- (methacryloyloxy)ethyl]dimethylbenzylammonium chloride were used as comonomer (functional monomer). They were synthesized by the quaternization of 2-(dimethylamino)ethyl methacrylate with 1-bromopenthane and 1-benzylchloride, respectively, Obtained hydrogels were characterized by using a Fourier Transform Infrared Spectrometer (FTIR) and a Scanning Electron Microscope attached with Energy Dispersive X-Ray dedector (SEM-EDX). SEM images represented porous surface morphologies of the hydrogels, moreover the presence of quaternized monomers in the copolymers were approved spectrophotometrically. The ratio of functional monomers in the polymer matrix were varied between 1% and 15%. Dynamic swelling experiments were carried out at pH 6.0 and 25°C for all hydrogels and some important parameters such as swelling ratio at equlibrium (Smax), initial swelling ratio (r0), equilibrium water content (EWC) and diffusion coeficient (D) were calculeted from obtained data. The value of Smax increased up to approximately 1100% for hydrophilic functional monomer incorporated hydrogels. While the value of Smax was 4.4 g water/g hydrogel for homopolymeric poly(N-vinylimidazole), it was 52.2 g water/g hydrogel for a copolymeric hydrogel. The water transport mechanism into polymeric matrix was Fickian (diffusion-controlled) for homopolymeric and copolymeric hydrogels containing lower amount of functional monomer while the mechanism was non-Fickian for all of others, meaning that both diffusion and polymer relaxation control.

___

  • 1. Erdem, M., Dikişler, Ö., Erdem, B., Removal of Orange II from aqueous solutions using N-vinyl imidazolebased hydrogels as adsorbents, Chem. Eng. J., 203, 1403-1412, 2016.
  • 2. Yu, J., Yang, G., Li, Y., Yang, W., Gao, J., Lu, Q., Synthesis, characterization, and swelling behaviors of acrylic acid/carboxymethyl cellulose superabsorbent hydrogel by glow-discharge electrolysis plasma, Polym. Eng. Sci., 54, 2310-2320, 2014.
  • 3. Shi, X., Jietang, Wang, A., Development of a superporous hydroxyethyl cellulose-based hydrogel by anionic surfactant micelle templating with fast swelling and superabsorbent properties, J. Appl. Poly. Sci., 132, 42027, 2015.
  • 4. Gharekhani, H., Olad, A., Mirmohseni, A., Bybordi, A., Superabsorbent hydrogel made of NaAlg-g-poly(AAco-AAm) and rice husk ash: Synthesis, characterization, and swelling kinetic studies, Carbohyd., Polym., 168, 1- 13, 2017.
  • 5. Rashidzadeh, A., Olad, A., Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite, Carbohyd., Polym., 114, 269-278, 2014.
  • 6. Puoci, F., Iemma, F., Spizzirri, U.G., Cirillo, G., Curcio, M., Picci, N., Polymer in agriculture: A review, Am., J., Agr. Bio. Sci., 3, 299-314, 2008.
  • 7. Kaşgöz, H., Durmuş, A., Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties, Polym. Advan. Technol., 19, 838-845, 2008.
  • 8. Hayase, G., Kanamori, K., Fukuchi, M., Kaji, H., Nakanishi, K., Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water, Angew. Chem. Int. Edit., 52, 1986-1989, 2013.
  • 9. Kosemund, K., Schlatter, H., Ochsenhirt, J., Krause, E.L., Marsman, D.S., Erasala, G.N., Safety evaluation of superabsorbent baby diapers, Regul. Toxicol. Pharm., 53, 81-89, 2009.
  • 10. Marsich, E., Travan, A., Donati, I., Di Luca, A., Benincasa, M., Crosera, M., Paoletti, S., Biological response of hydrogels embedding gold nanoparticles, Colloid. Surface. B, 83, 331-339, 2011.
  • 11. Wang, X., Strand, S.P., Du, Y., Varum, K.M. ChitosanDNA-rectoritenanocomposites: Effect of chitosan chain length and glycosylation, Carbohyd., Polym.,79, 590- 596, 2010.
  • 12. Zhang, C., Subramanian, H., Grailer, J.J., Tiwari, A., Pilla, S., Steeber, D.A., Gong, S., Fabrication of biodegradable poly(trimethylene carbonate) networks for potential tissue engineering scaffold applications, Polym. Advan. Technol., 20, 742-747, 2009.
  • 13. Merino, S., Martín, C., Kostarelos, K., Prato, M., Vázquez, E., Nanocomposite hydrogels: 3D polymerNanoparticle synergies foron-Demand drug delivery, ACS Nano, 9, 4686-4697, 2015.
  • 14. Alexander, A., Ajazuddin, Khan, J., Saraf, S., Saraf, S., Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications, J. Cotrol. Release, 172, 715- 729, 2013.
  • 15. Tomic, S., Suljovrujic, E.H., Filipovic, J.M. Biocompatible and bioadhesive hydrogels based on 2- hydroxyethyl methacrylate, monofunctional poly(alkylene glycol)s and itaconic acid, Polym., Bull., 57, 691-702, 2006.
  • 16. Üzüm, O.B., Karadağ, E., Swelling characterization of novel ternary semi-IPNs: Acrylamide/1- vinylimidazole/PEG hydrogels, Polym. Advan. Technol., 18, 483-489, 2007.
  • 17. Üzüm, Ö.B., Karadağ, E., Swelling characterization of poly (acrylamide-co-N-vinylimidazole) hydrogels crosslinked by TMPTA and semi-IPN's with PEG, J. Polym., Res., 14, 483-488, 2007.
  • 18. Trivedi, J.H., Synthesis, characterization, and swelling behavior of superabsorbent hydrogel from sodium salt of partially carboxymethylated tamarind kernel powderg-PAN, J. Appl. Poly. Sci., 129, 1992-2003, 2013.
  • 19. Thakur, A., Wanchoo, R. K. Singh, P., Structural parameters and swelling behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels, Chem. Biochem. Eng. Q., 25, 181-194, 2011.
  • 20. Hezaveh, H., Muhamad, I.I., Study on preperation and swelling: Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study, J. Taiwan Inst. Chem. E., 44, 182-191, 2013.
  • 21. Wang, F.P., Mu, H.P., Zhang, J.Y., Li, W.X., Wang, Q.Z., Du, X.Z., Study on preparation and swelling kinetics of P(AA-co-C(8)PhEO(10)Mac) pH-sensitive hydrogel in vitro drug release study, J. Appl. Poly. Sci., 130, 1981-1989, 2013.
  • 22. Karadağ, E., Saraydın, D., Çetinkaya, S., Güven, O., In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels, Biomaterials, 17, 67-70, 1996.
  • 23. Chapiro, A., Mankowski, Z. Polymerization of vinylimidazole in bulk and in solution, Eur. Polym. J., 24, 1019-1028, 1988.
  • 24. Rivas, B.L., Maturana, H.A., Molina, M.J., GomezAnton, M. R., Pierola, I.F., Metal ion binding properties of poly (N-vinylimidazole) hydrogels, J. Appl. Polym. Sci., 67, 1109-1118, 1998.
  • 25. Işık, B., Doğantekin, B. Swelling behavior of poly (acrylamide-co-N-vinylimidazole) hydrogels under different environment conditions, J. Appl. Polymer Sci., 96, 1783-1788, 2005.
  • 26. Genç¸ F., Uzun, C., Güven, O., Quaternized poly (1- vinylimidazole) hydrogel for anion adsorption, Polym. Bull., 73, 179-190, 2016.
  • 27. Singh, B., Dhiman, A., Design of acacia gum-carbopolcross-linked-polyvinylimidazole hydrogel wound dressings for antibiotic/anesthetic drug delivery, Ind., Eng., Chem. Res., 55, 9176-9188, 2016.
  • 28. Primo, G., Garcia Manzano, M.F., Romero, M.R., Alvarez Igarzabal, C.I., Synthesis and characterization of hydrogels from 1-vinylimidazole. Highly resistant co-polymers with synergistic effect, Mater. Chem. Phy., 153, 365-375, 2015.
  • 29. Bardajee, G. R., Hooshyar, Z., Zehtabi, F., Pourjavadi, A., A superabsorbent hydrogel network based on poly ((2-dimethylaminoethyl) methacrylate) and sodium alginate obtained by γ-radiation: synthesis and characterization, Iran. Polym. J., 21, 829-836, 2012.
  • 30. Kurisawa, M., Yokoyama, M., Okano, T., Gene expression control by temperature with thermoresponsive polymeric gene carriers, J. Control. Release, 69, 127-137, 2000.
  • 31. Uzun, C., Hassnisaber, M., Şen, M., Güven, O., Enhancement and control of cross-linking of dimethylaminoethyl methacrylate irradiated at low dose rate in the presence of ethylene glycol dimethacrylate, Nucl. Inst. Method. Phys. Res. Sect. B, 208, 242-246, 2003.
  • 32. Şen, M., Sarı, M., Radiation synthesis and characterization of poly(N,N-dimethylaminoethyl methacrylate-co-N-vinyl-2-pyrrolidone) hydrogels, Eur. Polym. J., 41, 1304-1314, 2005.
  • 33. Erdem, B., Synthesis and characterization studies of a series of N-vinyl imidazole-based hydrogel, Anadolu Univ. J. of Sci. and Technology A Appl. Sci. and Eng., 17, 974-983, 2016
  • 34. Karadağ, E., Kırıştı, T., Kundakçı, S., Üzüm, Ö.B., Investigation of sorption/swelling characteristics of chemically crosslinked AAm/SMA hydrogels as biopotential sorbent, J. Polym. Sci., 117, 1787-1797, 2010.
  • 35. Kundakçı, S., Üzüm, Ö.B., Karadağ, E., A new composite sorbent for water and dye uptake: Highyl swollen acrylamide/2-acrylamido-2-methyl1propanesulfonic acid/clay hydrogels crosslinked by 1,4-butanediol dimethacrylate, Polym. Composite., 30, 29-37, 2009.
  • 36. Ende, M.T.A., Peppas, N.A., Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels .2. Diffusion and release studies, J. Cotrol. Release, 48, 47-56, 1997.
  • 37. Peppas N.A., Analysis of Fickian and non-Fickian drug release from polymers, Pharm Acta Helv., 60, 110-111, 1985.
  • 38. Peppas, N.A., Mikos, A.G., Preparation methods and structure of hydrogels. Hydrogels in Medicine and Pharmacy, Vol: 1, Peppas N.A. (editor), CRC Press, Florida, A.B.D., 1986.
  • 39. Üzüm, Ö.B., Karadağ, E., Equilibrium swelling studies of chemically crosslinked highly swollen acrylamidesodium acrylate hydrogels in various water-solvent mixtures, Polym. Plast. Technol. Eng., 49, 609-616, 2010.
  • 40. Cabot, B., Deratani, A., Foissy, A., Adsorption of poly (vinylimidazoles) onto silicasurfaces, Colloid. Surface. A, 139, 287-297, 1998.