LİNEER ELEKTROMANYETİK FIRLATICI SİSTEM TASARIMI VE EŞDEĞER DEVRE MODELİ KULLANARAK GELİŞTİRİLMİŞ FIRLATMA PERFORMANSI İÇİN BOYUT OPTİMİZASYONU

Bu çalışmada, insansız hava araçları için mekanik fırlatma sistemlerine alternatif olarak elektromanyetik bir fırlatıcı sistemde kullanılmak üzere tek taraflı lineer indüksiyon motor tasarlanmıştır. Çalışmada tasarlanan motor özellikleri 3 fazlı, 8 kutuplu, 380 V, 6 m/s, yükü 5,84 kg ve itme kuvveti 409,55 Ndur. Yapılan tasarımın klasik fırlatıcılara karşı yeni bir alternatif sunması beklenmektedir. Bu çalışmanın amacı fırlatma maliyetlerini azaltmak ve mobil bir fırlatma sistemi oluşturmaktır. Bu amaç için tasarlanan örnek motor tasarım parametreleri ve geometrik boyutlandırma eşitlikleri çalışmada sunulmuştur. Motorun geometrik boyutlarını hesaplayabilmek için analitik hesaplama yapabilen bir program geliştirilmiştir. Program, geliştirilen algoritma ile iteratif olarak en iyi geometrik boyut değerlerini elde etmeye çalışmaktadır. Çalışmada eşdeğer devre modeli kullanılarak fırlatma performansını geliştirmek için boyut optimizasyonu yapılmıştır. Amaç fonksiyonu, tasarım parametrelerinden verim, güç faktörü ve sistem ağırlığında denenmiş ve fırlatma perf

DESIGN OF LINEAR ELECTROMAGNETIC LAUNCHER SYSTEM AND DIMENSION OPTIMIZATION USING EQUIVALENT CIRCUIT MODEL OF LINEAR ELECTROMAGNETIC LAUNCHERS TO IMPROVE LAUNCHING PERFORMANCE

In this study, single side linear induction motor has been designed to use in an electromagnetic launcher system that would be alternative of mechanical launcher system for unmanned aerial vehicle. Design specifications are 8 poles, 3 phases, 380 V, 6 m/s rotor velocity, 5.84 kg payload and 409.55N thrust. It is expected that proposed design presents an alternative to conventional launchers. The purpose of the design is to reduce the cost of launching operation and constitute a mobile launcher system. For this aim, the designed prototype motor parameters and geometric dimension equations are presented in study. The software has been developed which can calculate the motor geometric dimensions analytically. The software uses developed algorithm to get optimum geometric dimensions iteratively. The dimension optimization using equivalent circuit model of linear electromagnetic launchers to improve launching performance. Goal function tested at the launcher design parameters on the efficiency, power factor, and weight, which investigated influence on launching performance. Two-dimensional finite-element analysis evaluates the results from the dimension optimization.

___

  • 1. Gürdal, O, "Electromagnetic Field Theory", Nobel Press, Ankara, 2000.
  • 2. Gürdal, O, "Design of Electrical Machines", Nobel&Atlas Press, Ankara, 2001.
  • 3. Westinghouse Engineer, “A wound rotor, 1400 feet long", 160-161, 1946.
  • 4. Jones, M.F, “Three phase linear motor catapult system,” U.S.Patent 2404984, July 30, 1946.
  • 5. Yamamura, S, "Theories Of The Linear, Induction Motor", Wiley Press, New York, 1979.
  • 6. Boldea, I, ve Syed A. N, "Linear Electric Actuators and Generators", Cambridge Unıversity Press.
  • 7. Boldea, I, ve Syed A. N, "The Induction Machines Design Handbook Second Edition", Taylor and Francis Group, 2010.
  • 8. Adamiak, K. Ananthasivam, K. Dawson, G.E. Eastham, A.R, Gieras, J.F, "The causes and consequences of phase unbalance in single-sided linear induction motors", IEEE Transactions on Magnetics , Vol 24 , No 6 , 3223 – 3233, 1988 .
  • 9. Pai, R.M, Boldea, I, Nasar, S.A, "A complete equivalent circuit of a linear induction motor with sheet secondary", IEEE Transactions on Magnetics, Vol 24, No 1, 639 – 654, 1988.
  • 10. Laithwaite, E.R, "Adapting a linear induction motor for the acceleration of large masses to high velocities", IEE Proceedings-Electric Power Applications, Vol 142, No 4, 262 – 268, 1995.
  • 11. Faiz, J, Jafari, H, "Accurate modelling of singlesided linear induction motor", IEEE International Magnetics Conference, Vol 18, No 21, 1999.
  • 12. Topaloğlu, İ, Gürdal, O, “Optimization Of Salient Pole Synchronous Hydro Generators Using Sequential Mixed Integer Nonlinear Programming Method at Transient and Dynamic Analysis Conditions”, J. Fac. Eng. Archit. Gazi Univ., Vol 25, No 2, 355-361, 2010.
  • 13. Topaloğlu, İ, Gürdal, O, “A Second Order Sensitivity Analysis Based Numerical Approach Developed For Dimension Optimization, In Electric Machine Design by Electromagnetic Design Software” J. Fac. Eng. Archit. Gazi Univ., Vol 25, No 2, 363-369, 2010.
  • 14. Fair, H.D, “Electromagnetic Launch Science and Technology in the United States Enters a New Area”, IEEE Transaction on Magnetics, Vol 41, No 1, 158–164, 2005.
  • 15. Bushway, R. R, "Electromagnetic aircraft launch system development considerations" IEEE Transactions on Magnetics, Vol 37, No 1, 52- 54, 2001.
  • 16. Fair, H.D, "The science and technology of electric launch" IEEE Transactions on Magnetics, Vol 37, No 1, 25-32, 2001.
  • 17. Doyle, M.R, Samuel, D.J., Conway, T. ve Kilmowski, R.R., "Electromagnetic aircraft launch system-emals" IEEE Transactions on Magnetics, Vol 31, No 1, 528-533, 1995.
  • 18. Sung, J. H. ve Nam, K. “A new approach to vector control for a linear induction motor considering end effects,” IEEE IAS Annu. Meeting, 2284–2289, 1999.
  • 19. Duncan, J., “Linear induction motor-Equivalent circuit model,” Proc. Inst. Elec. Eng., Vol 130, No 1, Part B, 1983.
  • 20. Bazghaleh, A. Z., Naghashan, M. R., ve Meshkatoddini, M. R., "Optimum Design of Single-Sided Linear Induction Motors for Improved Motor Performance", IEEE Transactions on Magnetics, Vol. 46, NO 11, 3939-3947, 2010.
  • 21. Kim, D.H, Ship, K. S, ve Sykulski, J. K, "Applying Continuum Design Sensitivity Analysis Combined With Standard EM Software to Shape Optimization in Magnetostatic Problems” IEEE Transactıons on Magnetics, Vol 40, No. 2, 1156-1159, 2004.
  • 22. Im, D., Park, S. ve Park, D., “Optimum design of single-sided linear induction motor using the neural networks and finite element method,” in Int. Joint Conf. Neural Networks, Vol 3, 2811– 2814,, 1993.
  • 23. Im, D. Park, S. ve Im, J., “Design of single-sided linear induction motor sing finite element metod and SUMT,” IEEE Trans. Magn., Vol 29, No. 2, 1762–1766, 1993.
  • 24. Creppe, R. C., Ulson, J. A. C., ve Rodrigues, J. F., “Influence of design parameters on linear induction motor end effect,” IEEE Energy Convers., Vol 23, no. 2, 3270–3272, 2008.
  • 25. Ryu, J. S, Yao, Y, Koh, C.S, “Optimal Shape Design of 3-D Nonlinear Electromagnetic Devices Using Parameterized Design Sensitivity Analysis”, IEEE Transactıons on Magnetics, Vol 41, No 5, 1792-1795, 2005.
  • 26. Yokoi, T. ve Ebihara, D. “An optimal design technique for high speed mathematical programming method,” IEEE Trans. Magn., Vol 25, No 5, 3596–3598, 1989.
  • 27. Isfahani, A. H., Ebrahimi, B. M. ve Lesani, H., “Design optimization of low-speed single-sided linear induction motor for efficiency and power factor,” IEEE Trans. Magn., Vol 44, No. 2, 266–272, 2008.
  • 28. Jian, W. X., Yongchang, G. Z., Yaohua Z., Wang, L. Y., ve Guo, Y., "An Improved Equivalent Circuit Model of a Single-Sided Linear Induction Motor". IEEE Transactions on Mag. Vol 59, No 5, 2277-2282, 2010 .
  • 29. Jian, W. X., Youguang, Z, Wang, G. Y, Longcheng, Y, Z, "Equivalent circuits for singlesided linear induction motors" Energy Conversion Congress and Exposition, 2009, 1288-1293, 2009.
  • 30. Stumberger, G, Aydemir M.T, Zarko, D, Lipo, T.A, “Design and Comparison of Linear Synchronous Motor and Linear Induction Motor for Electromagnetic Aircraft Launch Systems”, IEEE International Electric Machines and Drives Conference, Vol 1, 494-500, 2003.
  • 31. Stumberger, G, Zarko, D, Aydemir M.T, Lipo, T.A, “Sizing Design of a Superconductor Bulk Permanent Magnet Linear Synchronous Motor for Electromagnetic Aircraft Launch Systems”, IEEE Transactions on Applied Superconductivity, Vol 14, No 1, 54-62, 2004.
  • 32. Gieras, J.F, "Linear Induction Drives", Oxford University Press, New York, 1994.
  • 33. Plodpradistha, W, "Study of Tubular Linear Induction Motor for Pneumatic Capsule Pipeline system", Ph.D. Dissertation, Department of Electrical Engineering, University of Missouri, Columbia, 2002.
  • 34. Mirsalim, M, Doroudi, A, Moghani, J.S, "Obtaining the Operating Characteristics of Linear Induction Motors: A New Approach", IEEE Transactions on Magnetic, Vol 38, 1365- 1370, 2002.
  • 35. Isfahani, A.H, Ebrahimi, B.M, Lesani, H, "Design Optimization of a Low-Speed SingleSided Linear Induction Motor for Improved Efficiency and Power Factor", IEEE Transactions on Magnetic, Vol 44, 266-272, 2008.
  • 36. Still, A, ve Sisikind, C.S, "Elements of Electrical Machine Design", McGraw-Hill Book Company, New York, 1954.
  • 37. Kim, D.H, Ship, K. S, ve Sykulski, J. K, "Applying Continuum Design Sensitivity Analysis Combined With Standard EM Software to Shape Optimization in Magnetostatic Problems” IEEE Transactıons on Magnetics, Vol 40, No. 2, 1156—1159, 2004.
  • 38. Ryu, J. S, Yao, Y, Koh, C.S, “Optimal Shape Design of 3-D Nonlinear Electromagnetic Devices Using Parameterized Design Sensitivity Analysis”, IEEE Transactıons on Magnetics, Vol 41, No 5, 1792-1795, 2005.
  • 39. Fujii, N. “Second Order Sensitivity Analysis for a Class of Shape Optimization Problems”, IEEE Transactions on Magnetics, 1176-1178, 1994.
  • 40. Pai, R.M, Boldea, I, Nasar, S.A, "A complete equivalent circuit of a linear induction motor with sheet secondary", IEEE Transactions on Magnetics, Vol 24, No 1, 639 – 654, 1988.
  • 41. Gerçek, A. S, "Analytical design software for single-sided linear induction motor" PhD Thesis, Electrical and Electronic Engineering, University of Gaziantep, 2009.
  • 42. Göynük, Y. “Development of an electrical machines analysis And optimum design software package” PhD Thesis, Electrical and Electronic Engineering, Middle East Technical University, 2008.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ