Lazer kırınım yöntemiyle zeminlerin tane büyüklüğü dağılımının belirlenmesi:Genel ilkeler ve örnek hazırlama yöntemi

Bu çalışmada, lazer kırınım yönteminin genel ilkeleri ve bu yöntemle zeminlerin tane büyüklüğü dağılımının belirlenmesinde dikkat edilmesi gereken konular ele alınmış ve örnek alma yöntemi, sonuçların tekrarlanabilirliği ve analizlerde çeşme suyunun kullanılabilirliği araştırılmıştır. Lazer kırınım analizlerinde 0.1 – 0.5 g arasında değişen çok az bir örnek yeterli olmaktadır. Ancak, bu kadar az bir örneğin bütünü temsil edecek şekilde alınması veya azaltılması için uygulanan standart bir yöntem henüz bulunmamaktadır. Bu çalışmada, örnek alınması için bir yöntem önerilmiş ve bu yöntemin uygulanabilirliği tartışılmıştır. Önerilen yönteme göre alınan örneklerin d10, d50 ve d90 parametrelerinin değişim katsayıları hesaplanıp ISO 13320’de belirtilen üst sınır değerlerle karşılaştırılmış ve önerilen yöntemin uygulanabilir olduğu ortaya konulmuştur. Önerilen yöntemin herhangi bir cihaz gerektirmeden basit araç gereçlerle uygulanabilmesi gibi avantajları da bulunmaktadır. Bununla birlikte, lazer kırınım analizlerinde damıtık su, havası alınmış damıtık su, çeşme suyu ve havası alınmış çeşme suyu kullanılmasının analiz sonuçları üzerindeki etkisi de araştırılmıştır. Sonuçta, lazer kırınım analizlerinde çeşme suyu kullanılmasının bir sakıncasının olmadığı ortaya konulmuştur.

Determination of soil particle size Distribution using laser diffraction method: General principles and sampling method

In this study, general principles of laser diffraction method and important subjects for the determination of soil particle size distribution by this method are considered, and sampling method, repeatability of results and suitability of tap water in the analysis are investigated. In the laser diffraction analysis 0.1 – 0.5 g sample is adequate. However there is no standard sampling method for taking 0.1 – 0.5 g sample which is representative of the whole sample. In this study a sampling method was proposed and its practicability was discussed. Coefficients of variation of d10, d50 and d90 parameters of samples taken according to proposed method are calculated and compared with upper limit values defined in ISO 13320, and has been shown that suitability of proposed method. Proposed method has advantages also which can be applied simple tools and apparatus without using special devices. In addition to this, effect of water characteristics (air free, purified, tap water and air free tap water) on the laser diffraction analyses results was also investigated. In conclusion, it is found out that there is no drawback in utilizing of tap water in laser diffraction analysis.

___

  • 1. Wen, B., Aydın, A., Aydın-Duzgoren, N.S., “A comparative study of particle size analysis by sieve-hydrometer and laser diffraction methods”, Geotechnical Testing Journal, Cilt 25, No 4, 434 – 442, 2002.
  • 2. ASTM D 2487 (American Society for Testing and Materials), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Annual Book of ASTM Standards, A.B.D., 2000.
  • 3. TC Bayındırlık ve İskan Bakanlığı Karayolları Genel Müdürlüğü, Yollar Fenni Şartnamesi, Karayolları Genel Müdürlüğü Matbaası, Yayın No.170/2, Ankara, 2002.
  • 4. Bardet, J. P., Experimental Soil Mechanics, Prentice-Hall, Inc., New Jersey, A.B.D., 1997.
  • 5. ASTM D 422 (American Society for Testing and Materials), “Standart test method for particle-size analysis of soil”, Annual Book of ASTM Standards, A.B.D., 1998.
  • 6. BS 1377: Soils for Civil Engineering Purposes, Part 2: Classification Tests, 4. Determination of the Liquid Limit, British Standard Institution, England, 1990.
  • 7. Lu, N., Ristow, G.H. and Likos, W.J., “The accuracy of hydrometer analysis for fine-grained clay particles”, Geotechnical Testing Journal, Cilt 23, No 4, 487 – 495, 2000.
  • 8. Zhang, Z., and Tumay, M.T., “Granulometric evaluation of particle size using suspension pressure during sedimentation”, Geotechnical Testing Journal, 18 (1): 121 – 129, 1995.
  • 9. Vitton, S.J and Sadler, L.Y., “Particle size analysis of soils using laser light scattering and X-Ray absorption technology”, Geotechnical Testing Journal, Cilt 20, No 1, 63 – 73, 1997.
  • 10. Beuselinck, L., Govers, G., Poesen, J., Degraer, G., Froyen, L., “Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method”, Catena, Cilt 32, 193 – 208, 1998.
  • 11. Ma, Z., Merkus, H. G., de Smet, J.G.A.E., Heffels C., Scarlett, B., “New developments in particle characterization by laser diffraction: size and shape”, Powder Technology, Cilt 111, 66 – 78, 2000.
  • 12. Malvern, “Diffraction Reference, MAN 0073 and Instrument Manuel, MAN 0054”, Malvern Instruments Ltd, Spring Lane South, Worcs, WR14 1AT, U.K. 1993.
  • 13. Barth, H. G., in: Modern Methods of Particle Size Analysis, Wiley, New York, 1984.
  • 14. Allen, T., Particle Size Measurement, Vol.1, fifth edition, Chapman&Hall, London, U.K., 1997.
  • 15. Rawle, A., “The basic principles of particle size analysis” www.malvern.co.uk.
  • 16. Hesseman, R., “Particle size analysis in ceramics manufacture”, International Ceramics, Cilt 1, 31 – 34, 2002.
  • 17. ISO 13320 – 1, “Particle size analysis – laser diffraction methods, Part 1: general principles, Annex A; Theoritical background of laser diffraction”, Geneve, Switzerland, 1999.
  • 18. Konert, M. and Vandenberghe, J., “Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction”, Sedimentology, Cilt 44, 523–535, 1997.
  • 19. Murray, M. R., "Is laser particle size determination possible for carbonate-rich lake sediments”, Journal of Paleolimnology, Cilt 27, 173 – 183, 2002.
  • 20. Buurman, P., Pape, T. and Muggler, C. C., “Laser grain-size determination in soil genetic studies. 1. Practical problems”, Soil Science, Cilt 162, No 3, 211-218, 1997.
  • 21. Planz, P. E., Particle-size Measurement from 1.0 to 1000 µm based on light scattering and diffraction, In: Modern Methods of Particle-size Analysis, Editör: H.G. Barth, Wiley, New York, 173 – 209, 1984.
  • 22. Bayvel, L.P. and Jones, A.R., Electromagnetic Scattering and Its Applications, Applied Science, London, U.K., 1981.
  • 23. Coulter Corporation, Coulter LS series product manuel PN 4237214A, Coulter Corporation, Miami, Florida, A.B.D., 1994.
  • 24. Hoff, E.V. & Bott, S.B., “Optical theory and refractive index: why it is important to particle size analysis”, Coulter Technical Bulletin, LS Series # 1010. Coulter Scientific Instruments, Hialeah, Florida, A.B.D.
  • 25. De Boer, G.B.J., De Weerd, C., Thoenes, D. And Goossens, H.W.J., “Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering”, Part. Charact., Cilt 4, 14–19, 1987.
  • 26. Head, K. H., Manuel of Soil Laboratory Testing, Volume 1, Soil Classification and Compaction Tests, Second Edition, John Wiley & Sons, inc, New York, A.B.D., 1992.
  • 27. Andreola, F., Castellini, E., Manfredini, T., Romagnoli, M., “The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin”, Journal of European Ceramic Society, Cilt 24, 2113 – 2124, 2004.
  • 28. Nettleship, I., Cisko, L. and Vallejo, L.E., “Aggregation of the clay in the hydrometer test”, Canadian Geotechnical Journal, Cilt 34, 621 – 626, 1997.
  • 29. McCave, I.N., Bryant, R.J., Cook, H.F. & Coughanowr, C.A., “Evaluation of laser diffraction size analyser for use with natural sediments”, Journal of Sedimentary Petrology, Cilt 56, 561 – 564, 1986.
  • 30. Chappell, A., “Dispersing sandy soil for the measurement of particle size distributions using optical laser diffraction”, Catena, Cilt 31, 271 – 281, 1998.
  • 31. Eshel, G., Lavy, G.J., Mingelgrin, U., Singer, M.J., “Critical evaluation of the use of laser diffraction for particle–size distribution analysis”, Soil Science Society of American Journal, Cilt 68, 736 – 743, 2004.
  • 32. Muggler, C. C., Pape, Th. and Buurman, P., “Laser grain-size determination in soil genetic studies. 2. Aggregation and clay formation in some Brazilian Oxisols”, Soil Science, Cilt 162, No 3, 219-228, 1997.
  • 33. Loizeau, J.L., Arbouille, D., Santiago, S. and Vernet, J.P., “Evaluation of a wide range laser diffraction grain size analyser for use with sediments”, Sedimentology, Cilt 41, 353 – 361, 1994.
  • 34. Özer, M., Lazer Kırınım Yöntemi İle Zeminlerin Tane Büyüklüğü Dağılımının Belirlenmesi ve Hidrometre Yöntemi İle Karşılaştırılması, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, 2006.
  • 35. Pabst, W., Kuneš, K., Havrda, J., Gregorová, E. “A note on particle size analyses of kaolins and clays”, Journal of European Ceramic Society, Cilt 20, 1429 – 1437, 2000.